
WRAPS: Denial-of-Service Defense through Web Referrals

XiaoFeng Wang∗ Michael K. Reiter†

Abstract

The web is a complicated graph, with millions of web-
sites interlinked together. In this paper, we propose to use
this web sitegraph structure to mitigate flooding attacks on a
website, using a new web referral architecture for privileged
service (“WRAPS”). WRAPS allows a legitimate client to
obtain a privilege URL through a click on a referral hypher-
link, from a website trusted by the target website. Using that
URL, the client can get privileged access to the target web-
site in a manner that is far less vulnerable to a DDoS flood-
ing attack. WRAPS does not require changes to web client
software and is extremely lightweight for referrer websites,
which eases its deployment. The massive scale of the web
sitegraph could deter attempts to isolate a website through
blocking all referrers. We present the design of WRAPS,
and the implementation of a prototype system used to eval-
uate our proposal. Our empirical study demonstrates that
WRAPS enables legitimate clients to connect to a website
smoothly in spite of an intensive flooding attack, at the cost
of small overheads on the website’s ISP’s edge routers.

1 Introduction

The web is a complicated referral graph, in which a node
(website) refers its visitors to others through hyperlinks.
In this paper, we propose to use this graph (called a site-
graph [37]) as a resilient infrastructure to defend against
distributed denial-of-service (DDoS) attacks that plague
websites today. Suppose eBay allows its trusted neighbors
(websites linking to it) such as PayPal to refer legitimate
clients to its privileged service through a privileged referral
channel. A trusted client need only click on a privileged
referral hyperlink on Paypal to obtain a privilege URL for
eBay, which certifies the client’s service privilege. When
eBay is undergoing a DDoS attack and not accessible di-
rectly, routers in its local network will drop unprivileged
packets to protect privileged clients’ flows. As such, a client

∗School of Informatics and Department of Computer Science, Indiana
University at Bloomington; xw7@indiana.edu

†Electrical & Computer Engineering and Computer Science Depart-
ments, Carnegie Mellon University; reiter@cmu.edu

being referred can still access eBay even during the attack.
Referral relations can be extended over the sitegraph: e.g.,
PayPal may refer its neighbors’ clients to eBay. In this way,
a website could form a large-scale referral network to fend
off attack traffic.

The architecture we propose to achieve such privileged
referrals, which we refer to as the “web referral architecture
for privileged service” or “WRAPS”, is built upon existing
referral relationships among websites. Incentives for de-
ployment, therefore, are not a significant barrier, provided
that the overhead of the referral mechanism is negligible.
Indeed, a website that links to others provides a better ex-
perience to its own customers if the links it offers are effec-
tive, and so websites have an incentive to serve privileged
URLs for the sites to which they link. The overheads ex-
perienced by this website’s users will be either nonexistent
if the website offers privileged referrals to only customers
that have already authenticated for other reasons, or mini-
mal if the website will refer any client after it demonstrates
it is driven by a human user (in the limit, asking the user
to pass a reverse Turing test or “CAPTCHA” [34]). As we
will show, the referrer incurs only negligible costs in order
to make referrals via our technique.

In order to evaluate WRAPS, we implemented it in an
experimental network environment which includes a soft-
ware router (Click [21, 20]) and Linux-based clients and
servers. Our empirical study shows that WRAPS en-
ables clients to circumvent a very intensive flooding attack
against a website, and induces reasonable costs on both
edge routers and referral websites. In contrast to other
capability-based approaches [40, 5], WRAPS does not re-
quire installing anything on a Web client. We explore the
pertinence of web topology to the efficacy of WRAPS. We
also describe a simple mechanism which helps a website ac-
quire many referral sites at a low cost and helps legitimate
clients obtain referrals seamlessly.

2 Related work

Numerous DDoS countermeasures have been proposed
in the last decade [23, 16, 13, 24, 12, 22, 32, 17, 39, 9, 7,
27, 29, 11, 3, 28, 18, 35, 36]. In this section, we focus on
the mechanisms which are most related to our proposal, in

particular, overlay-based and capability-based approaches,
and compare them with WRAPS.

Overlay networks have been applied to proactively de-
fend against DoS attacks. Keromytis et al. propose a se-
cure overlay services (SOS) architecture [19], which has
been generalized by Anderson [4] to take into account dif-
ferent filtering techniques and overlay routing mechanisms.
Morein et al. further propose to protect web services us-
ing SOS [25]. In these approaches, an overlay network is
composed of a set of nodes arranged in a virtual topology.
The routers around the protected web server admit http traf-
fic from only trusted locations known to overlay nodes. A
client who wants to connect to the web server has to first
pass a CAPTCHA posed by an overlay node, which then
tunnels the client’s connection to an approved location so
as to reach the web server. Similar work is that of Adkins
et al. [2], which employs the Internet Indirection Infrastruc-
ture (i3) to enable the victim to selectively stop individual
flows by removing senders’ forwarding pointers.

WRAPS differs from overlay-based approaches in sev-
eral important ways. First, these approaches assume the
existence of an overlay infrastructure in which a set of
dedicated nodes collaborate to protect an important web-
site, and need to modify protocols and client-side software.
This could introduce substantial difficulties for deployment.
WRAPS, however, asks only referral websites to offer a
lightweight referral service, which allows WRAPS to take
advantage of existing referral relationships on the web to
protect important websites. WRAPS also alters neither pro-
tocols nor client software. Second, overlay routing could
increase end-to-end latency [19]. WRAPS does not change
packets’ routing paths and thus avoids such overhead.

Recently researchers have studied capability-based ap-
proaches that authorize a legitimate client to establish a
privileged communication channel with a server using a
secret token (capability). Anderson et al. present an in-
frastructure from which a client can obtain a capability to
send packets to a server [5]. Yaar et al. designed an ap-
proach called SIFF that utilizes a client’s secret path ID as
its capability for establishing a privileged channel with a re-
ceiver [40]. Yang et al. propose an DoS-limiting Internet
architecture which improves SIFF [41]. Gligor proposes to
implement end-to-end user agreement [15] to protect con-
nections against flooding attacks on the TCP layer.

Similar to these approaches, WRAPS also uses capabil-
ity tokens to admit traffic. However, WRAPS focuses on
important challenges that have not been addressed previ-
ously. First, the capability distribution service itself could
be subject to DDoS attacks [6]. Adversaries may simply
saturate the link of the server distributing capabilities to
prevent clients from obtaining capabilities. The problem
becomes especially serious in an open computing environ-
ment, where a service provider may not know most of its

clients beforehand. WRAPS distributes capabilities through
a referral network. In many cases, the scale of this refer-
ral network will make it difficult for the attacker to block
clients from being referred to a target website. Second, ex-
isting capability-based approaches require modifications to
client-side software, which WRAPS avoids.

A fundamental question for both overlay-based and
capability-based mechanisms is how to identify legitimate
but unknown clients. So far, the only viable solution is a
CAPTCHA, which works only in human-driven activities
and has been subject to various attacks (e.g., [26]). Al-
though WRAPS can also use CAPTCHA, essentially our
approach relies on social-based trust to identify legitimate
clients: a party can refer new clients to a target server; the
server trusts them on the basis of its trust of the referrer.
This offers a new and potentially more effective way to pro-
tect an open system against DoS attacks. For instance, sup-
pose a group of universities agree to offer referral services
for each other. Once one’s website is subject to a flooding
attack, the trusted users of other schools (those with proper
university accounts) can still access the victim’s website
through WRAPS.

The idea of embedding a secret token inside part of an IP
address and port number (as we do here) also appeared in a
DoS defense mechanism proposed by Xu et al. [38] How-
ever, they use this approach only as an extension of syn-
cookies, for the purpose of detecting flows with spoofed IP
addresses. Our approach can also be viewed as an exten-
sion of network address translation (NAT), taking part of
the IP and port number fiels to hold an authorization secret.

3 Attack model

We assume that adversaries can modify at most a small
fraction of the legitimate packets destined for the target
website. Attackers capable of tampering with these pack-
ets on a large scale do not need to flood the target’s band-
width. Instead, they can launch a DDoS attack by simply
destroying these packets.

We assume that adversaries cannot eavesdrop on most le-
gitimate clients’ flows. In practice, monitoring a large frac-
tion of legitimate clients’ flows is difficult in wide area net-
works. However, WRAPS still works when adversaries are
capable of eavesdropping on some privileged clients’ flows.
In this case, a defender could control the damage caused by
these clients through standard rate limiting.

We assume that routers inside a website’s protection
perimeter are trusted. In practice, routers usually enjoy
better protection than end hosts. We further assume that
a DoS flooding attack on a website does not significantly
affect the flows from the website to clients. This is gener-
ally true in today’s routers which employ full-duplex links
and switched architectures.

4 Design

In WRAPS, a website grants a client greater privilege to
access its service by assigning to it a secret fictitious URL
called privilege URL (Section 4.1) with a capability token
embedded in part of the IP and port number fields. Through
that URL, the client can establish a privileged channel with
that website (referred to as the target website) even in the
presence of flooding attacks.

A client may obtain a privilege URL either directly from
the target website or indirectly from the website’s trusted
neighbors. A website offers a client a privilege URL if the
client is referred by one of the site’s trusted neighbors, or
is otherwise qualified by the site’s policies that are used to
identify valued clients, for example, those who have paid
or who are regular visitors. A qualified client will be redi-
rected to the privilege URL generated automatically using
that client’s identity, service information and a server secret.

A privilege URL leads its holder to the target website
through a protection mechanism (Section 4.2) which pro-
tects the website from unauthorized flows. The border of
this mechanism is the site’s ISP’s edge routers, which clas-
sify traffic into privileged and unprivileged flows, and trans-
late fictitious addresses in privilege URLs into the website’s
real address. Within the protection perimeter, routers pro-
tect privileged traffic by dropping unprivileged packets dur-
ing congestion.

A neighbor website refers a trusted client to the target
website’s privileged service. The referral is done through a
simple proxy script running on the referrer site, from which
the client acquires a redirection instruction leading to the
privilege URL. This is discussed in Section 4.3.

4.1 Privilege URLs

Resources available on the Internet are located via Uni-
form Resource Locators (URL). An http URL is of the fol-
lowing format: http://〈host〉:〈port〉/〈urlpath〉,
where the host and port fields could be the (IP, port)
pair of an http service on the Internet, which are accessible
to routers.

In WRAPS, we utilize privilege URLs to set up priority
channels. These URLs are fictitious because they do not di-
rectly address a web service. Instead, they contain secret
capability tokens which are verified by edge routers for set-
ting priority classes, and unambiguously translated by these
routers to the real location of the service. A privilege URL
hides a capability token inside the suffix of the destination
IP address (last one or two octets) and the whole destination
port field. The following fields are present in the token.

• Key bit (1 bit). This field is used to indicate the “au-
thentication key” currently in use (see Section 4.2).

• Priority field. This is an optional field which allows
the website to define more than one service priority.
Here, we use one priority class (i.e., a request is either
privileged or unprivileged) to describe our approach
for clarity of presentation, and so this field is unec-
essary and omitted.

• Message authentication code. A message authen-
tication code (MAC) prevents adversaries from forg-
ing a capability. The algorithm computing a MAC
over a message takes as inputs a secret key k and
the message to produce a w-bit tag. MAC generation
is based on a cryptographically-strong pseudorandom
function (PRF) so that the probability to compute the
right tag without knowing k is negligibly larger than
2−w. For a privileged client i, its MAC is denoted by
MAC (k, IP i), where IP i is i’s IP address.

Encoding a capability token into the destination IP and
port fields limits the length of MAC, especially for IPv4.
For example, a Class C network may be able to support
only a 16 to 20-bit MAC. This seems to make WRAPS vul-
nerable, allowing an adversary to forge a capability token
through a brute-force search. As we will show, however,
WRAPS contains a mechanism that effectively mitigates
this threat: any adversary without global eavesdropping ca-
pability will be unable to confirm its guess of a MAC value.
We present a detailed security analysis in Section 4.4.

It is possible that some clients’ fictitious (IP, port) pairs
coincide with a real application in the local network. How-
ever, this happens with a very small probability with the
MAC in place. One approach to prevent this problem with
certainty is to reduce the address range that can be mapped
to the web server, i.e., by reducing the MAC length, so that
this range does not intersect other servers. Another choice
is to use the most significant bit on the port field as a “token
indicator”, by which edge routers can identify the packets
that need address translation.

4.2 Protection mechanism

A website (the target) is protected by the edge routers of
its ISP or organization, the routers inside its local network,
and a firewall directly connected to or installed on the site’s
web server.

The target website shares a secret long-term key k with
its edge routers on the protection perimeter. Using this key,
the website periodically updates to all its edge routers a
shared verification key. We call a period between updates
a privilege period. Specifically, the verification key used in
the privilege period t is computed as k(t) = hk(t) where h
is a pseudorandom function family indexed by the key k.

The http server of the website listens to two ports, one
privileged and one not. The local firewall controls access

to those ports. Only the port corresponding to the unprivi-
leged traffic, typically port 80, is publicly accessible. The
other port can be accessed only by packets with source IP
addresses explicitly permitted by the firewall (as instructed
by the web server); this port is called the privilege port.

Below we describe a protection mechanism which allows
a client to acquire a privilege directly from a website and
establish a privileged channel with that website.

Privilege acquisition

1. A client that desires privileged service from a website
first applies for a privilege URL online. This applica-
tion process is site-specific and so we do not discuss it
here, but we presume that the client does this as part of
enrolling for site membership, for example, and before
an attack is taking place.

2. In period t, if the website decides to grant privilege to
a client i, it first interacts with the firewall to put i’s
source IP address IP i onto a whitelist of the privilege
port. It then constructs a privilege URL containing a
capability token τi(t) = bt‖MAC (k(t), IP i), where
bt is the one-bit key field for period t. The website
uses the standard http redirection to redirect the client
to this privilege URL.

Privileged channel establishment

1. Edge routers drop packets to the website addressed to
the privilege port of that website.

2. According to the position and the length λ of a capa-
bility token, an edge router takes the appropriate string
θ of λ bits from every TCP packet. Denote a substring
from the e1-th bit to the e2-th bit on θ by θ[e1, e2]. A
router processes a packet from a client i as follows.

If (θ[2, λ] = MAC (k(t), IP i)) then

Translate the fictitious destination IP address to
the target website’s IP address.

Set the destination port number of the packet to
the privilege port.

Forward the packet.

else

Forward the packet as an unprivileged packet.

3. Routers inside the protection perimeter forward the
packets toward the target website, prioritized accord-
ing to the ports of these packets. 1

1One way to do this is to set priority queues for different (IP, port) pairs
of the website, which can be easily configured in a modern router.

4. Upon receiving a packet with a source IP address IP i

and destined for the privilege port, the firewall of the
website checks whether IP i is on the port’s whitelist.
If not, the firewall drops the packet.

5. Using the secret key, the web server or firewall trans-
lates the source IP and port of every packet emitted
from the privilege port to the fictitious (IP, port) con-
taining the capability token. Note that no state infor-
mation except the key needs to be kept to perform this
translation.

To allow the update of privileged URLs to clients, there
exists a transition period between privilege periods t and
t + 1 during which both k(t) and k(t + 1) are in use. This
transition period could be reasonably long to allow most
privileged clients (who browse that website sufficiently fre-
quently) to visit. Once visited by a privileged client i in
this transition period, the website generates a new privilege
URL using k(t + 1) and with key field bt+1 equal to the
parity of t + 1. The website then redirects the client to that
URL. Also upon entering the transition period, the website
and edge routers record a single bit b indicating the parity of
t+1. If during the transition period, the edge router receives
a packet with key field bt = 1− b, the edge router uses k(t)
in the MAC computation; otherwise it uses k(t + 1).

A website can remove a client’s privilege by not updat-
ing its privilege URL. Standard rate-limiting technology can
also be used to control the volume of traffic produced by in-
dividual privileged clients in case some of them fall prey
to an adversary. An option to block a misbehaving privi-
leged client within a privilege period is to post that client’s
IP to a blacklist held by the website’s ingress edge routers.
This does not have to be done in a timely manner, as the
rate-limiting mechanism is already in place. In addition,
an adversary cannot fill the router blacklist using spoofed
IPs because the blacklist here only records the misbehaving
privileged clients who are holding the correct capability to-
kens. This blacklist is emptied periodically after the router
updates its verification key.

4.3 Referral protocol

When a website is under a flooding attack, legitimate but
as-yet-unprivileged clients will be unable to visit that site
directly, even merely to apply for privileged service. The
central idea of WRAPS is to let the trusted neighbors of the
website refer legitimate clients to it, even while the web-
site is under a flooding attack. The target website will grant
these trusted neighbors privilege URLs, and may allow tran-
sitive referrals: a referrer can refer its trusted neighbor’s
clients to the target website.

A privilege referral is done through a simple proxy script
running on the referrer website. A typical referrer website is

one that linked to the target website originally and is will-
ing to upgrade its normal hyperlink to a privilege referral
link, i.e., a link to the proxy. This proxy could be extremely
simple, containing only a few dozen lines of Perl code, and
very lightweight in performance. The proxy communicates
with the target server through the referrer’s privilege URL
to help a trusted client to acquire its privilege URL. The tar-
get server publicizes an online list of all these referrers, the
neighbors it trusts (Section 7), and only accepts referrals for
privileged service from these websites.

Only clients trusted by referrers are given privilege re-
ferral links. Such trusted clients could be those authenti-
cated to the referrer website for other purposes, those re-
ferred from the referrer’s trusted neighbors, or those proved
to be driven by a human through CAPTCHA tests. In other
words, these clients must be “authenticated” somehow by
the referrer.

Below, we describe a simple referral protocol.

1. A client i trusted by a referrer website r clicks on a
privilege referral link offered by r, which activates a
proxy on the referrer site.

2. The proxy generates a reference including the client’s
IP address IP i and sends the reference to the tar-
get server through a privileged channel established by
purlr, r’s privilege URL to the target website. As we
discussed in the previous section, edge routers of the
target website will authenticate the capability token in
purlr.

3. Upon receiving r’s reference, the target website checks
its list of valid referrers. If r’s IP does not appear on
the list, the website ignores the request. Otherwise, it
generates a privilege URL purl i for client i using IP i,
embeds it into an http redirection command and sends
the command to referrer r.

4. The proxy of referrer r forwards the redirection com-
mand to client i.

5. Running the redirection command, client i’s browser
is automatically redirected to purl i to establish a priv-
ileged channel directly with the target website.

An important issue is how to contain trusted but never-
theless compromised referrers who might introduce many
zombies to deplete the target website’s privileged service.
One mitigation is to prioritize the privileged clients: those
who are referred by a highly trusted referrer have higher
privileges than those from a less trusted referrer. WRAPS
assures that the high priority traffic can evade flooding at-
tacks on the low priority traffic. Within one priority level,
WRAPS rate limits privileged clients’ traffic. The target
website can also fairly allocate referral quotas among its

trusted neighbors. This, combined with a relatively short
privilege period for clients referred from referrer websites,
could prevent a malicious referrer from monopolizing the
privileged channel. The target website may update a repu-
tation value for each of its trusted neighbors. A malicious
privileged client detected will be traced back to its referrer,
whose reputation will be negatively affected.

4.4 Brute-force attacks on a short capa-
bility token

An adversary may perform an exhaustive search on the
short MAC in a privilege URL. Specifically, the adversary
first chooses a random MAC to produce a privilege URL
for the target website. Then, it sends a TCP packet to that
URL. If the target website sends back some response, such
as syn-ack or reset, the adversary knows that it made a cor-
rect guess. Otherwise, it chooses another MAC and tries
again.

This threat has been nullified by our protection mecha-
nism. The firewall of the target website keeps records of all
the website’s privileged clients and only admits packets to
privilege port from these clients. If the adversary uses its
real IP address for sending probe packets, the website will
not respond to the probe unless the adversary has already
become the site’s privileged client. If the adversary spoofs
a privileged client’s IP address to penetrate the firewall, the
website’s response only goes to that client, not the adver-
sary. Therefore, the adversary will never know whether it
makes a correct guess or not.

We reiterate that this approach does not introduce new
vulnerabilities. Only a client trusted by the target web-
site directly or referred by trusted neighbors will have its
IP address on the firewall’s whitelist. The storage for the
whitelists is negligible for a modern computer: recording a
million clients’ IP addresses takes only 4 MB. Therefore,
our approach does not leave an open door to other resource
depletion attacks. The performance of filtering can also be
scaled using fast searching algorithms, for example, Bloom
filters [8] that are capable of searching for entries at link
speed. To prevent a compromised referrer from attacking
the whitelist, a target website can set the quota of the num-
ber of referrals a referrer can make in one privilege period.

5 Implementation

To evaluate the design of WRAPS, we implemented it
within an experimental network with Class C IP addresses.
We utilized SHA-1 to generate a MAC [33] for privilege
URLs. The web server we intended to protect had a Linux
OS and an Apache http server that was configured to listen
to both port 80 and 22433. The latter was the privilege port.

We built the protection mechanism into a Click software
router [21, 20] and the TCP/IP protocol stack of the target’s
kernel, using Linux netfilter [1] as the firewall. We con-
structed the referral protocol on the application layer, on
the basis of simple cgi programs running on the referrer and
the target websites. In this section, we elaborate on these
implementations.

5.1 Implementation of the protection
mechanism

WRAPS depends on the target’s ISP’s edge routers to
classify inbound traffic into privileged and unprivileged,
and to translate fictitious addresses of privileged packets to
the real location of the service. It also depends on routers in-
side the website’s local network to protect privileged flows.
We implemented these functions in a Click software router.

Click is a modular software architecture for creating
routers [21, 20]. A Click router is built from a set of packet
processing modules called elements. Individual elements
implement certain router functions such as packet classifi-
cation, queuing and scheduling. A router is configured as a
directed packet-forwarding graph, with elements on its ver-
tices and packet flows traversing its edges. A prominent
property of Click is its modularity, which makes a Click
router extremely easy to extend.

IPClassifier IPVerifier

IPRewrite

PrioSched

IP/arp
classifi-
cation

IP
headers
check

TCP pkt

drop pkt
to 22433unprivilegedother pkt

privileged high priority

low priority
Routing
Table
lookup

IP option

ICMP
errors

Figure 1. WRAPS elements on a Click packet
forwarding path.

We added WRAPS modules to an IP router configura-
tion [21, 20]. WRAPS elements planted in the standard IP
forwarding path are illustrated in Figure 1. We added 5 el-
ements: IPClassifier, IPVerifier, IPRewrite, Priority queue
and PrioSched. IPClassifier classifies all inbound packets
into TCP packets which are forwarded to IPVerifier, and
other packets, such as UDP and ICMP, which are forwarded
to the normal forwarding path. IPVerifier verifies every TCP
packet’s capability token embedded in the last octet of the
destination IP address and the 2-octet destination port num-
ber. Verification of a packet invokes the MAC over a 4-
byte input (the source IP address) and a 64-bit secret key.
The packets carrying correct capability tokens are sent to
IPRewrite, which sets a packet’s destination IP to that of
the target website and destination port to port 22433. Un-

privileged packets, except for those destined for port 22433,
follow UDP and ICMP traffic; unprivileged traffic to port
22433 is dropped.

Both privileged and unprivileged flows are processed by
some standard routing elements. Then, privileged packets
are queued into a high priority queue while other packets
flow into a low priority queue. A PrioSched element is used
to multiplex packets from these two queues to the output
network interface card (NIC). PrioSched is a strict prior-
ity scheduler, which always tries the high priority queue
first and then the low priority one, returning the first packet
it finds [21, 20]. This ensures that privileged traffic re-
ceives service first. Though we explain our implementation
here using only two priority classes, the whole architecture
can be trivially adapted to accommodate multiple priority
classes.

On the target server front, netfilter is used to filter in-
coming packets. Netfilter is a packet filtering module inside
the Linux kernel. Users can define their filtering rulesets
to the module through iptables. In our implementation, the
target website first blocks all access to its privilege port.
Whenever a new client obtains privilege, a cgi script run-
ning on the web server adds a new filter rule to iptables,
explicitly permitting that user’s access to the privilege port.
Direct utilization of iptables may potentially cause the per-
formance degradation of netfilter when there are many priv-
ileged clients. Our general approach, however, could still
scale well after proper modification of the netfilter module,
adding a fast searching algorithm like Bloom filters to the
kernel.

To establish a privileged connection, packets from the
target web server to a privileged client must bear the ficti-
tious source address and port in that client’s privilege URL.
In our implementation, we modified the target server’s
Linux kernel to monitor the privilege port (22433). When-
ever a packet is emitted with that source port, the kernel
employs the secret key and the MAC to generate a capabil-
ity token, and embeds this token into last octet of the source
IP field and the source port field. This address translation
can also be done in the firewall, and configured to support
more than two priority classes.

5.2 Implementation of the referral proto-
col

The referral protocol is performed by two simple scripts
running on the referrer and the target websites. The
script on the referrer acts as a proxy which is activated
through privilege referral links accessible to the trusted
clients of that website. A privilege referral link is a
simple replacement of a normal hyperlink. For exam-
ple, a normal hyperlink to eBay (http://www.ebay.
com) can be replaced with a privilege hyperlink on Pay-

pal (http://www.paypal.com/cgi-bin/proxy.
pl?http://www.ebay.com), where “proxy.pl” is the
proxy written in perl. Clicking on that hyperlink, a client
triggers the proxy which in turn invokes a cgi script on the
target website through the referrer’s privilege URL, convey-
ing the client’s source IP address as a parameter.

The cgi script on the target website first checks whether
the proxy is entitled to make such a referral by searching
its referrer list. If the referrer is on the list, the script
inputs a filtering rule to iptables to permit the access
of the client being referred, generates a privilege URL
and then sends to the referrer proxy a new webpage
containing an http redirection command to the new
URL. Here is an example of the redirection command:
<meta HTTP-EQUIV="Refresh" CONTENT="1;
URL=http://A.B.C.τ/index.htm">, where τ is a
capability token and “A.B.C” is the IP prefix of the target
website.

Receiving the webpage with the redirection command,
the proxy relays it to the client. Interpreting the page, the
client’s browser will be automatically redirected to the tar-
get website through a privileged channel, and communicate
with the website directly afterwards.

6 Empirical Evaluation

In this section, we report our empirical evaluation of
WRAPS in an experimental network composed of a set of
Linux servers, each with up to 2.8 GHz CPU and 1 GB
memory. The objectives of this study are: (1) evaluation
of the overheads of WRAPS, both on edge routers (Sec-
tion 6.1) and referrer websites (Section 6.3); and (2) test-
ing the performance of WRAPS under DoS flooding attacks
(Section 6.2). We elaborate our experimental results in the
following sections.

6.1 Overhead on edge router

The target server’s ISP’s edge routers play an important
role in WRAPS, undertaking the tasks of classifying pack-
ets, verifying capability tokens, and translating addresses.
An important question is whether the overheads of these
tasks, especially computing a MAC for every TCP packet,
could be afforded by an edge router. We investigated this
problem by comparing the packet forwarding capabilities
of a Click router with and without WRAPS elements.

In this experiment, we connected two computers to a
router (a computer installed with Click software router)
through two Gigabit NICs. One of them generated a con-
stant and high-rate flow of 64-byte UDP packets, and the
other received these packets from the router. We utilized
Click’s UDP traffic generator [20] as a traffic source; it
works in the Linux kernel and is capable of generating more

traffic more evenly than a user-level program. Our original
design does not verify UDP, though to test the performance
of IPVerifier, we had the router check the MAC on every
UDP packet in this test according to the last octet of the
destination IP address and the port number.

Using a Pentium-4 2.6GHz computer as the router, we
observed a maximal forwarding rate of 350k packets per
second (pps) over the standard packet forwarding path. Sur-
prisingly, this rate did not change after we added in WRAPS
elements. This could result from the constraints of hard-
ware: the 1GB memory and PCI bus of the router might be-
come performance bottlenecks before the CPU did. When
this happens, the router reaching its performance limits
might still have sufficient CPU cycles to check the MAC
for every packet. Such a conjecture was confirmed after we
moved the software router to a slower computer (Pentium-3
800MHz). This time, a difference emerged: we observed
290k pps for the normal forwarding path2 and 220k pps for
the one with WRAPS elements.

The experimental results show that verification of the
MAC affected the performance of edge routers. However,
such overheads seem to be affordable. In a Pentium-3 com-
puter, running SHA-1 on a 4-byte input and an 8-byte key
takes about 1.39 microseconds, which is reduced to 0.33
microseconds in a Pentium-4 system. Since IPVerifier per-
forms a MAC on just a few bytes of every packet, the rate of
verification seems able to keep up with the forwarding rate.

Moreover, this performance could be improved through
hand-tuning the functions used to implement the MAC. For
example, an optimized AES program written in assembly
code is reported to be able to work at 17 cycles/byte over
a Pentium-3 system [14]. In our setting, this might lead to
over one million pps even with a Pentium-3. A hardware
implementation of IPVerifier will be even faster. Therefore,
we tend to believe that the cost of WRAPS should be af-
fordable in practice.

6.2 Performance under flooding attacks

We evaluated the performance of WRAPS under inten-
sive bandwidth-exhaustion attacks. Our experimental set-
ting included 6 computers: a Pentium-4 router was linked
to three Pentium-4 attackers and a legitimate client through
four Gigabit interfaces, and to a target website through a
100Mb interface. We deliberately used Gigabit links to the
“outside” to simulate a large group of ISP’s edge routers
which continuously forward attack traffic to a link on the
path toward the website.

Under the above network setting, we put WRAPS to the
test under UDP and TCP flooding attacks. In the UDP

2The Click project reported a faster forwarding speed (about 350k pps)
over a similar hardware setting [20]. This could be because they used a
“simple” forwarding path to test the router, without processing IP check-
sum, option, fragmentation and ICMP errors.

flooding test, we utilized Click’s UDP generators to pro-
duce attack traffic. Three attackers attached to the router
through Gigabit interfaces were capable of generating up
to 1.5Mpps of 64-byte UDP packets, which amounts to
0.75Gbps. On the other hand, the 100Mb channel to the
web server could only sustain up to 148,800pps of 64-byte
packets. As such, the flooding rate could be set to 10 times
as much as the victim’s bandwidth, and so these attackers
could easily saturate the victim’s link.

0 500 1000 1500
10

2

10
4

10
6

10
8

10
10

Attack Rate (K Packets / Second)

C
o
n
n
e
c
t
i
o
n

T
i
m
e

(
M
i
c
r
o
s
e
c
o
n
d
s
)

Priority Port
Port 80

0 200 400 600 800 1000
10

2

10
4

10
6

10
8

10
10

Attack Rate (K Packets / Second)

C
o
n
n
e
c
t
i
o
n

T
i
m
e

(
M
i
c
r
o
s
e
c
o
n
d
s
)

Priority Port
Port 80

Figure 2. Left: UDP flooding; Right: TCP
flooding

On the legitimate client, a test program continuously at-
tempted to connect to the target website, either to port 80 or
to a privileged URL which was translated to port 22433 by
the router, until it succeeded. The overall waiting time for a
connection attempt is called connection time. We computed
the average connection time over 200 connection attempts.
Our experiment compared the average connection times of
unprivileged connections (to port 80) with those of privi-
leged connections (through capability tokens). Figure 2 de-
scribes the experiment results. Note that the scale of Y-axis
is exponential.

As illustrated in the figure, average connection times of
both normal and privileged channels jumped when the at-
tack rate hits 150kpps, roughly the bandwidth of the target
website’s link. Above that, latency for connecting to port
80 kept increasing with the attack rate. When the attack
rate went above 1Mpps, these unprivileged connections no
longer had any reasonable waiting times; e.g., a monstrous
404 seconds was observed at 1.5Mpps. Actually, under such
a tremendous attack rate, we found it was extremely diffi-
cult to get even a single packet through: an attempt to ping
the victim server was effectively prevented, with 98% of
the probe packets lost. Connections through the privileged
channel, however, went very smoothly: the average connec-
tion delay stayed below 8 milliseconds while the attack rate
went from 150kpps to 1.5Mpps. Comparing this with the
latency when there was no attack, we observed a decent in-
crease (0.8ms to 8ms) for the connections under WRAPS
protection, versus a huge leap (0.8ms to 404,000ms) for un-
protected connections.

A TCP-based flooding attack differs from UDP flooding
in that TCP packets will go through the IPVerifier on the
router, potentially adding more cost to forwarding. In our
experiment, TCP-flooding traffic was provided by an attack
program which generates packets through socket system
calls as a typical DDoS attack tool does. This application-
level generator cannot work as fast as the Click UDP gen-
erator does in the kernel. We got a peak rate of 1.14Mpps,
which nevertheless was enough to deplete a 100Mb chan-
nel. Figure 2 presents the experimental results. Similar
to what we observed in the UDP flooding, privileged con-
nections effectively circumvented flooding flows, with the
worst-case delay of about 7.7 milliseconds. On the other
hand, the average connection time for unprotected clients
was about 323 seconds.

6.3 Overheads on referrer website

We evaluated the performance of a referrer website when
it is making referrals to a website under a flooding attack.
Our experimental setting was built upon the setting for
bandwidth-exhaustion attacks. We added two computers,
along with the original client, and connected them through
a 100Mb switch to the router. One of these three comput-
ers acted as a referrer web server and the other two were
used as clients. On every client, a script simulated clicks on
the referrer website’s privilege referral link. It was capable
of generating up to 100 concurrent referral requests. One
client was also continuously making connections to the re-
ferral website to collect connection statistics. The attackers
kept on producing TCP traffic of 1.14Mpps to saturate the
target’s link.

Through the experiment, we found that making referrals
adds a negligible cost to the referrer website. Even in the
situation when 200 users were simultaneously requesting
referrals, the average latency for connecting to the refer-
rer website only increased by less than 40 microseconds.
Recall that only authenticated clients or those that passed
CAPTCHA tests are allowed to click on a privilege referral
hyperlink. Therefore, the rate of referral requests will not
be extremely high in practice. In this case, it seems that the
normal operation of the referrer website will not be affected
noticeably by our mechanism.

7 Discussion

7.1 Web topology

A fundamental question for WRAPS is whether a web-
site under DoS threats is able to find enough referral web-
sites to protect it. In our research, we studied this problem
using a real sitegraph, the .gov data collection distributed

by CSIRO [10]. Due to space limits, here we sketch our
findings.

We observed two important statistical properties from
the sitegraph which are highly related to WRAPS. First,
more important websites (with higher siteranks [37]) tend
to have more neighbors. A neighbor website would be
willing to offer referral service because referrals cost little
in WRAPS and the referrer is expected to benefit from of-
fering reliable links to its customers. Of course, one will
not trust all its neighbors. However, we believe that impor-
tant websites are more likely to have many trusted neigh-
bors. Actually, our research discovered that an important
site might also have many outbound links to those who link
to it: on average, a top 10 website in the CSIRO dataset
connects to about 334 neighbors. These outbound links are
widely perceived as “trust transfer” from the important site
to another site, as discovered by studies in operations re-
search [30, 31]. In addition, an important website could
also use its high siterank as an asset to attract many un-
known small websites to protect it. Trust can be established
in this case through some external means, for example, con-
tract. The reward the important website offers to its refer-
rers could be as small as a reward link. Such a link will
make an unknown website look more trustworthy and help it
to establish its reputation, with the trust “transferred” from
the famous website [30, 31]. This could encourage many
small websites to join efforts to protect an important site.
Second, we found almost all important websites are linked
together. Since referrals can be transitive, this property al-
lows these websites to pool their referral websites to protect
each other.

To facilitate search of referrers, a website can list all
its referrer sites on a webpage to let search engines, such
as Google, index and cache that page. Legitimate clients,
therefore, can easily discover these referrers even during a
DoS flooding attack.

7.2 Limitations

There are several limitations of WRAPS, mostly arising
from the fact that it encodes privilege URLs as IP addresses
instead of as domain names:

1. WRAPS supports only clients that use fixed (or in-
frequently changed) IP addresses. An extension of
WRAPS that supports dynamic NAT users is to gen-
erate the client’s capability using the client’s IP prefix,
instead of its whole IP address. This extends privileged
service to clients using dynamic addresses in a subnet.

2. A user must access the target site using its privileged
URL, if she wants privileged service. That is, the do-
main name of the server cannot be resolved via DNS,
and moreover the user must save (e.g., bookmark) her

privilege URL from the server when it is updated at the
end of a privilege period. In these ways, WRAPS is
not transparent to users, and would require client-side
modifications to make it transparent.

3. WRAPS could also break SSL/TLS service because
while privilege URLs are encoded as IP addresses in-
stead of domain names, the target site certificate will
typically certify a key for a site name, not its address.
This, however, is not a problem for applications that
perform reverse lookup on the IP address to find a do-
main name before verifying the SSL/TLS certificate.
Another way to solve this problem is to confine the ca-
pability token to the port number field, with the only
cost being some degradation in defense against floods
with randomly spoofed addresses. For example, Pay-
pal can redirect a client to https://www.ebay.
com:capability to allow the client to establish a
TLS session with eBay.

Finally, discovery of referrer websites is not transparent
to clients in WRAPS. One way to mitigate this problem is
to let a client’s ISP be its referrer. For example, the websites
of all academic institutions could agree to offer referral ser-
vices to each other. Whenever an academic client sends a
request to a server within an institution’s domain, that re-
quest will be automatically redirected by the client’s ISP
(i.e., its institution) to the local referral website. Moreover,
we might take a technique similar to dynamic DNS to al-
low a target website to dynamically map its domain name
to its referrer sites’ IP addresses when it is undergoing a
DoS attack. We plan to further investigate these approaches
in future research.

References

[1] The netfilter/iptables project. http://www.netfilter.org.

[2] D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica. Taming ip
packet flooding attacks. In Proceedings of Workshop on Hot Topics
in Networks (HotNets-II), November 2003.

[3] M. Adler. Tradeoffs in probabilistic packet marking for IP traceback.
In Proceedings of 34th ACM Symposium on Theory of Computing
(STOC-02), 2002.

[4] D. Andersen. Mayday: Distributed filtering for internet services. In
Proceeding of USITS, 2003.

[5] T. Anderson, T. Roscoe, and D. Wetherall. Preventing internet denial-
of-service with capabilities. In Proceedings of Workshop on Hot Top-
ics in Networks (HotNets-II), November 2003.

[6] K. Argyraki and D. R. Cheriton. Network capabilities: The good, the
bad and the ugly. In Proceedings of the 4th Workshop on Hot Topics
in Networks, Nov. 2005.

[7] S. Bellovin, M. Leech, and T. Taylor. The ICMP trace-
back messages. In Internet-Draft, draft-ietf-itrace-01.txt, De-
cember 1999. ftp://ftp.ietf.org/internet-drafts/
draft-ietf-itrace-01.txt.

[8] B. Bloom. Space/time trade-offs in hash coding with allowable er-
rors. Communications of ACM, 13(7):422–426, 1970.

[9] H. Burch and B. Cheswick. Tracing anonymous packets to their ap-
proximate source. In Proceedings of the 14th USENIX System Ad-
ministration Conference, Dec. 1999.

[10] CSIRO. Web Research Collections (TREC Web and Terabyte Track).
http://es.csiro.au/TRECWeb/.

[11] D. Dean, M. Franklin, and A. Stubblefield. An algebraic approach
to IP traceback. In Proceedings of Network and Distributed System
Security Symposium (NDSS-01), February 2001.

[12] P. Ferguson and D. Senie. RFC 2267: Network ingress filtering:
Defeating denial of service attacks which employ IP source ad-
dress spoofing, Jan. 1998. ftp://ftp.internic.net/rfc/
rfc2267.txt.

[13] S. Floyd and K. Fall. Promoting the use of end-to-end congestion
control in the internet. IEEE/ACM Transactions on Networking, Au-
gust 1999.

[14] B. Gladman. Aes and combined encryption/authentication modes.
fp.gladman.plus.com/AES/index.htm.

[15] V. Gligor. Guaranteeing access in spite of service-flooding attack.
In R. Hirschfeld, editor, Proceedings of the Security Protocols Work-
shop, Lecture Notes in Computer Science. Springer-Verlag, 2004.

[16] J. Ioannidis and S. Bellovin. Implementing pushback: Router-based
defense against ddos attacks. In Proceedings of the Symposium on
Network and Distributed System Security (NDSS-02), 2002.

[17] C. Jin, H. Wang, and K. Shin. Hop-count filtering: An effective
defense against spoofed traffic. In Proceedings of ACM CCS, 2003.

[18] A. Juels and J. Brainard. Client puzzle: A cryptographic defense
against connection depletion attacks. In S.Kent, editor, Proceedings
of NDSS’99, pages 151–165, 1999.

[19] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay
services. In Proceedings of ACM SIGCOMM, August 2002.

[20] E. Kohler. The Click modular router. MIT, November 2000. PhD
thesis.

[21] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The
click modular router. ACM Transactions on Computer Systems,
18(3), August 2000.

[22] J. Li, J. Mirkovic, and M. Wang. Save: Source address validity en-
forcement protocol. In Proceedings of IEEE INFOCOM, 2002.

[23] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker. Controlling high bandwidth aggregates in the network.
CCR, 32(3):62–73, July 2002.

[24] R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth
flows at the congested router. In Proceedings of ICNP, November
2001.

[25] W. Morein, A. Stavrou, D. Cook, A. Keromytis, V. Misra, and
D. Rubenstein. Using graphic turing tests to counter automated ddos
attacks against web servers. In Proceedings of ACM CCS, 2003.

[26] G. Mori and J. Malik. Recognizing objects in adversarial clutter:
Breaking a visual CAPTCHA. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, June 2003.

[27] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Network sup-
port for IP traceback. In Proceedings of ACM SIGCOMM, August
2000.

[28] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio,
S. Kent, and W. Strayer. Hash-based IP traceback. In Proceedings of
the ACM SIGCOMM, August 2001.

[29] D. Song and A. Perrig. Advanced and authenticated marking
schemes for IP traceback. In Proceedings of IEEE INFOCOMM,
April 2001.

[30] K. J. Stewart. Trust transfer on the world wide web. Organization
Science, 14(1), 2003.

[31] K. J. Stewart and Y. Zhang. Effects of hypertext links on trust trans-
fer. In ICEC ’03: Proceedings of the 5th international conference on
Electronic commerce, pages 235–239, New York, NY, USA, 2003.
ACM Press.

[32] R. Stone. An IP overlay network for tracking dos floods. In Proceed-
ings of USENIX Security Symposium, 2000.

[33] G. Tsudik. Message authentication with one-way hash functions. In
Proceedings of Infocom, 1992.

[34] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA:
Using hard AI problems for security. In Advances in Cryptology —
EUROCRYPT 2003. Springer-Verlag, 2003.

[35] X. Wang and M. Reiter. Defending against denial-of-service attacks
with puzzle auctions. In IEEE Symposium on Security and Privacy,
May 2003.

[36] X. Wang and M. Reiter. Mitigating bandwidth-exhaustion attacks us-
ing congestion puzzles. In Proceedings of the 11th ACM conference
on Computer and Communication Security, November 2004.

[37] J. Wu and K. Aberer. Using siterank for p2p web retrieval. Technical
Report IC/2004/31, Swiss Federal Institute of Technology, Lausanne,
Switzerland, March 2004.

[38] J. Xu and W. Lee. Sustaining availability of web services under se-
vere denial of service attacks. IEEE Transaction on Computers, spe-
cial issue on Reliable Distributed Systems, 52(2):195–208, February
2003.

[39] A. Yaar, A. Perrig, and D. Song. Pi: A path identification mechanism
to defend against DDoS attacks. In IEEE Symposium on Security and
Privacy, May 2003. http://www.ece.cmu.edu/∼adrian/
projects/pi.ps.

[40] A. Yaar, A. Perrig, and D. Song. An endhost capability mechanism
to mitigate DDoS flooding attacks. In Proceedings of the IEEE Sym-
posium on Security and Privacy, May 2004.

[41] X. Yang, D. Wetherall, and T. Anderson. A dos-limiting network ar-
chitecture. In SIGCOMM ’05: Proceedings of the 2005 conference
on Applications, technologies, architectures, and protocols for com-
puter communications, pages 241–252, New York, NY, USA, 2005.
ACM Press.

