
Privacy-Preserving Genomic Computation Through
Program Specialization

Rui Wang1, XiaoFeng Wang1, Zhou Li1, Haixu Tang1, Michael K. Reiter2, Zheng Dong1

1Indiana University at Bloomington.
2University of North Carolina at Chapel Hill.

ABSTRACT
In this paper, we present a new approach to performing impor-
tant classes of genomic computations (e.g., search for homologous
genes) that makes a significant step towards privacy protection in
this domain. Our approach leverages a key property of the human
genome, namely that the vast majority of it is shared across humans
(and hence public), and consequently relatively little of it is sensi-
tive. Based on this observation, we propose a privacy-protection
framework that partitions a genomic computation, distributing the
part on sensitive data to the data provider and the part on the pu-
bic data to the user of the data. Such a partition is achieved through
program specialization that enables a biocomputing program to per-
form a concrete execution on public data and a symbolic execution
on sensitive data. As a result, the program is simplified into an effi-
cient query program that takes only sensitive genetic data as inputs.
We prove the effectiveness of our techniques on a set of dynamic
programming algorithms common in genomic computing. We de-
velop a program transformation tool that automatically instruments
a legacy program for specialization operations. We also demon-
strate that our techniques can greatly facilitate secure multi-party
computations on large biocomputing problems.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access

General Terms
Security

Keywords
Privacy-Preserving Computation, Program Specialization, Human
Genome, Symbolic Execution, Dynamic Programming, Secure Multi-
Party Computation

1. INTRODUCTION
Recent progress in the study of the human genome has led to a

revolution in biomedical science, which promises a profound im-
pact on many aspects in people’s lives. These advances, how-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09,November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

ever, do not come without introducing new concerns: genomic data
carry sensitive personal information such as genetic markers for
diseases, whose confidentiality is threatened by the increasing col-
lection and distribution of those data for medical research. To pro-
tect genome privacy, prior research suggests anonymizing genome
data before releasing them, through techniques such as DNA lattice
anonymization [47]. Such an approach, however, reduces the infor-
mation in the original data and as a result, undermines their utility
for genome research.

A straightforward approach that avoid disclosing sensitive data
involved in a computation to the party using the data (calleddata
consumeror DC) is to simply delegate all the computation tasks
to the party providing the data (calleddata provideror DP). This
centralized treatment, however, is unviable because the DP can eas-
ily become a performance bottleneck. In the case that the DC also
holds sensitive inputs to its computation, a secure multi-party com-
putation (SMC) [69, 29] needs to be performed between these two
parties. Unfortunately, recent research shows that even optimized
SMC cannot handle genome computations of a realistic scale [34],
which often involve millions of nucleotides.

Many important genome studies, such as search of homologous
genes [6, 7, 38, 58, 9], comparison of syntenic regions across multi-
ple genomes [63, 45], and protein identification in proteomics [61,
67, 32, 17], utilize dynamic programming [64] and other algorithms
to compare a query DNA or protein sequence with genomic se-
quences in a genome database. For example, in order to determine
the level of variation of a specific gene in the population, a DC may
request to compare a query gene sequence from a reference genome
with its homologous gene sequences from all individual genomes
in a personal genome database. The privacy problem here is that
these genomes contain some sensitive genetic variations, which are
mostly related to single nucleotide polymorphism (SNP) [43], a
DNA variation that differs between members of a species. These
variations can be used to identify individuals and their personal
health information such as genetic diseases, and therefore should
not be exposed to the DC. On the other hand, it is well known
that genetic variations represent only a small fraction of the entire
human genome, as indicated by prior research [4] (0.5 percent be-
tween two unrelated persons), and our analysis in the Appendix
(0.01 percent among a population of 1 million). Though the sen-
sitivity of individual SNPs [43] are yet to be determined, we can
adopt a conservative approach that treats all SNPs as sensitive data.
Even in this case, nearly all human genes consist of a vast majority
of common (and definitely non-sensitive) nucleotides that serve as
part of the inputs to aforementioned research.

The above observation can be leveraged to protect sensitive ge-
netic information involved in a genomic computation, through dis-
tributing the computation between the DP and the DC: the DP un-

dertakes a small portion of the computation related to sensitive
data while the DC works on the rest of a genome sequence in-
volving only nonsensitive nucleotides. As a result, the computa-
tion can be accomplished without revealing sensitive nucleotides to
the DC. Partitioning a computation for privacy protection has been
studied in prior research [18, 16]. For example, Swift [18] uses
information-flow analysis to separate an application into the parts
that work on the data with different security levels. However, such
an approach can be less applicable to genome algorithms that inter-
twine the operations on both public and sensitive data. A prominent
example is a category of dynamic programming algorithms (DPA)
common in the aforementioned research: once a DPA encounters
a sensitive nucleotide, all the follow-up computation will all be re-
lated to it. As a result, an information-flow analysis will tell us to
put the whole computation on the DP side.

In this paper, we propose a new technique that appliesprogram
specialization[35] to partition a genomic computation according to
the sensitivity levels of the genome data it works on. Our approach
allows the DC to compute over the genome sequences sanitized by
the DP, on which sensitive nucleotides are replaced with symbols.
This is achieved through amixed execution: a concrete execution
on public data and a symbolic execution [42] on those symbols. As
a result, a biocomputing program can be specialized into a “query”
program for the DP, which takes nothing but sensitive nucleotides
as its inputs. Given that sensitive nucleotides only take a very small
portion of the data a program processes, its specialized query pro-
gram is typically much more efficient, and can be easily computed
by the DP. An efficient query not only saves the DP’s resources but
also significantly reduces the cost for performing an SMC protocol,
should the DC also have sensitive inputs involved in the computa-
tion. To control information leaks from the outcome of a compu-
tation, we treat the program as a database query, and use a query
auditor (Section 2.4) to mediate its answers. To efficiently retrofit
legacy biocomputing code with the capability to perform such dis-
tributed computations, we also designed a source-to-source trans-
formation tool that automatically analyzes a legacy program and
instruments it for mixed executions.

Figure 1: Framework.

We outline the contributions of this paper as follows:
•A privacy protection framework.We propose a distributed frame-
work for privacy-preserving genomic computing, as illustrated in
Figure 1. Our framework distributes a computation task between
the DP and the DC, and lets the DP handle a small portion of the
task related to its sensitive data. This avoids expensive SMC when
the DC does not have sensitive inputs, and significantly reduces the
overheads for running such a protocol when it does.
•Computation partitioning for privacy protection.We propose novel
techniques that use public data to specialize a genomic computing
program into a much more efficient query program for processing
sensitive data on the DP. We theoretically analyze the effectiveness
of these techniques over a category of DPAs that are extensively

used in bioinformatics.
•Source-to-source transformation tool.We design a new tool that
automatically analyzes a legacy genomic program and instrument
it with the code to perform specialization.
•Implementation and evaluations.Our evaluations show that our
techniques enable many important genome algorithms [64, 56, 54,
6] to work on a large amount of data at small overheads. We imple-
mented a prototype of our tool and successfully applied it to trans-
form three biocomputing libraries. We also studied use of SMC
protocols over query programs, and observed a significant improve-
ment in performance compared with a direct application of them to
unspecialized algorithms.

Our technique is based upon partition of a computation task ac-
cording to the sensitivity of its nucleotide inputs. We are fully
aware that identifying sensitive SNPs is still an ongoing research [33].
However, prior research does indicate that such SNPs take only
a very small portion of human genome [27], and many important
genome studies [6, 7, 38, 58, 9, 63, 45, 61, 67, 32, 17] work on con-
tiguous genome sequences that involve only small amount of SNPs.
The classification of sensitive/nonsensitive nucleotides only serves
as an input to our approach.

The rest of the paper is organized as follows. Section 2 and 3
describes our query generation techniques and transformation tool.
Section 4 reports on an evaluation of our approach. Section 5 dis-
cusses the limitations of our current design. Section 6 presents the
related prior research, and Section 7 concludes the paper.

2. COMPUTATION PARTITIONING
In this section, we present the techniques that partition a genomic

computation task according to the sensitivity levels of genome data.
Our approach is based upon program specialization (a.k.a., partial
evaluation), a technique that uses partial inputs of a program to pro-
duce a new program that only accepts the rest of the inputs [35].
In our research, we developed the specialization techniques for
genome computing, which reduces an algorithm to a query pro-
gram using a sanitized DNA record. As a first step, our current
focus is on a set of dynamic programming algorithms [64, 56, 54,
6] that are common in genome computing.

2.1 Overview
The general idea of our techniques can be illustrated through a

simple example in Figure 2. The example computes theedit dis-
tancebetween genome sequencesα andβ, i.e., the minimal num-
ber of edit operations, including delete, insert and replace, to con-
vert one sequence to the other. This is done through dynamic pro-
gramming over a two-dimension matrixD(0 · · ·n, 0 · · ·m),
wheren andm are the lengths ofα andβ respectively. Specifically,
the algorithm first initializes the matrix by settingD(i, 0) to i for
0 ≤ i ≤ n, andD(0, j) to j for 0 ≤ j ≤ m. Then, it recursively
fills the matrix as follows:

D(i, j) = min(D(i− 1, j) + 1, D(i, j − 1) + 1,

D(i− 1, j − 1) + s(i, j)) (1)

wheres(i, j) is a score function that has a value 1 ifα[i], the i
nucleotide onα, is different fromβ[j], thejth nucleotide onβ, and
a value 0 otherwise. The minimal edit cost between these sequences
is recorded inD(n, m) and the edit process that incurs that cost is
described by a path from the entry(0, 0) to (n, m).

Figure 2 presents an example withα=ATC and β=ACC. The
edit distance here isD(3, 3) = 1, and the optimal edit path is
(0, 0) → (1, 1) → (2, 2) → (3, 3), as each cell on the chain pro-
vides the smallest edit cost to the next one according to Equation 1.
This algorithm is implemented by a programP1 that iteratively

Figure 2: A simple example.

computes the values of the cells in the matrix.
Suppose thatβ[2] is a sensitive nucleotide that is replaced by a

symbol. This preventsP1 from accomplishing the computation,
because it cannot get the values for the third and fourth columns in
the matrix. To solve this problem, we transfer the program to an-
other program,P2, to perform a mixed execution. Specifically, the
statements at Line 3, 4, 5 and 6 ofP1 are all modified to work on
both concrete and symbol inputs: all the operations go as normal if
the input to a statement contains only concrete values; otherwise,
symbolic execution [42] is performed to generate an expression as
its output. Such an expression is furtherreducedthrough, for ex-
ample, combining all the constants. The score functionS1 of P1
is also converted intoS2: if a branch condition contains symbols
(Line 15 inS2), S2 exports the branch condition inS1 and both of
its branches to aresidualprogram, and returns a symbolsi,j , where
i andj are the indices of nucleotide inputs. The same transforma-
tion happens to themin operation at Line 6 ofP1. Its counterpart
statement simplifies the expressions the operation involves through
unfolding symbols into expressions, combining constants and com-
paring two expressions using common symbols and value ranges.
In the end, the reduced expressions inD(3, 3) is exported to the
residue program, which serves as the query for the DP.

Matrix 2 shows the process of computing overβ in the presence
of an unknown nucleotide. ConsiderD(3, 3) as an example. Com-
puting its value using Equation 1 results in an expression that seeks
the minimal one among four expressions:e1 = s2,2, e2 = s2,2+2,
e3 = s3,2 + 2 ande4 = s2,2 + 2. This expression is further re-
duced as follows. We first find thate1 is smaller thane2 ande4,
as all of them describe a sum betweens2,2 and a constant, ande1

has the smallest constant. Then,e1 is compared withe3 using the
value range of symbolss2,2 ands3,2, which is either 0 or 1, though
their exact values are unknown. As a result, the query program we
generate only contains a very simple expression,e1, along with the
part of the score function for computings2,2. It is evident that the
cost for answering such a query on the DP side is far lower than
runningP1. More interestingly, the DC can even figure out the op-
timal edit path without consulting the DP: as we can observe from
Matrix 2, the value ofD(3, 3) can be traced back toD(2, 2), and
again toD(1, 1) andD(0, 0) according to Equation 1; this can be
done without knowing the content ofβ[2].

The above specialization techniques are elaborated in Section 2.2.
Their effectiveness is theoretically analyzed in Section 2.3. The
transformation fromP1 to P2 can be achieved automatically us-

ing program analysis techniques, which is discussed in Section 3.

2.2 Specialization Techniques
To specialize a program, we need to locate its statements that

work on sensitive nucleotides and transform them into the form
that specialization operations can be performed. Those ”tainted”
statements are identified by a taint analysis, which we describe in
Section 3. Here we first present our specialization techniques.

Specialization operations. Our approach converts every tainted
statement into a program snippet that checks the input it receives:
if the input does not contain symbols, the original statement is ex-
ecuted; otherwise, a symbolic expression is built through symbolic
execution [42] and further simplified by a reduction function before
being exported as an output. Denote the specialization operations
on a programP by specialize(P). Such operations happen to fol-
lowing program elements:
•Assignment.An assignmenta = exp is changed toa = reduce(exp)
if the expressionexp involves symbols, wherereduce() is a reduc-
tion function.
•Branching.A branching statement is in the form “if exp then
P , else P ′”, where exp is the branch condition, andP and
P ′ are the statements to be executed on the two branches. Such
a statement is transformed to a set of statements that first checks
reduce(exp): if the outcome is either true or false, the program
proceeds as normal; otherwise, the following statement is exported
to a residue program: “if reduce(exp) then specialize(P),
else specialize(P ′)”. Also exported are the state of the pro-
gram prior to the branching, including the values of the variables to
be used inP andP ′.

To evaluatespecialize() on bothP andP ′ online, we need to
set a checkpoint prior to the branching statement and roll back after
exploring one branch. This can incur significant performance over-
head. An alternative is to symbolically execute both branches of-
fline to acquire their symbolic expressions, and replace the symbols
in the expressions with concrete values online. Further complicat-
ing the specialization efforts is the fact that a branch can include
other tainted branching statements, which makes the cost of evalu-
ation high. A simple solution can be exporting all statements of a
branch if it contains other tainted branches.
• Loop. A loop is residualized if its exit condition is symbolic and
cannot be evaluated after proper reduction. When this happens, we
can choose to specialize the body of the loop if it does not involve

tainted branches.
• Function.When part of input parameters to a function’s are sym-
bols, the function needs to be specialized using the techniques de-
scribed above. When this happens, a symbolic expression can be
returned. If a function is repeatedly called with different parame-
ters, we can choose to residualize it without specialization.
• Tainted address.Programs may read or write a memory loca-
tion whose address depends on the values of sensitive nucleotides.
For example, the index of an array can be determined by unknown
symbols, and a pointer in aCprogram can be tainted by sensitive in-
puts. When a tainted address is encountered, we can simply export
all the statements that directly or transitively rely on the address to
the residue program.

Another treatment of a tainted address is to explore all possible
values it can take. A nucleotide can only assume four values:A, T,
C andG. Therefore, a read from the address involving one symbol
gives four possible outcomes at most, which can be represented by
a new symbol. Writing to the address is more complicated, as we
need to create four threads, each handling one possible version of
data. This can be problematic when multiple symbols are present,
which causes the number of the threads to increase exponentially.
Further study of this problem is left as our future research.

Reduction. Key to specialization is reduction [35] that serves to
simplify symbolic expressions. A typical reduction technique is
constant folding that combines all the constants in an expression.
This is achieved by taking advantage of the properties of a compu-
tation, such as commutativity, associativity and distributivity. For
example,10 + a + 6 can be reduced toa + 16. In some cases, an
expression can be simplified by unfolding a symbol into the expres-
sion it represents. As an example, consider an expressiona+b+10
with b = a + 6. Unfoldingb reduces it to2a + 16.

A Boolean expression can be evaluated even when it contains
symbols. For example, we know that a branch conditiona + 10 ≥
a+6 is true even when the value ofa is unknown, as the symbols on
both sides of the inequality cancel each other and only the concrete
value4 ≥ 0 is left. This approach can be applied to the compar-
ison between two linear expressions that contain the same set of
symbols and each of them has the same coefficient. More gener-
ally, combining multiple occurrences of the same symbols when
possible can help simplify an expression.

In our research, we design another reduction technique that eval-
uates a Boolean expression using the value ranges of the symbols
it contains. Specifically, our approach identifies the maximal and
minimal values a symbol can take and then propagate this range to a
symbolic expression. Whenever a comparison between two expres-
sions happens and the ranges of these expressions do not overlap,
its Boolean outcome can be determined. For example, consider ex-
pressionsexp = a + 9 andexp’ = b + 6. Given the ranges of
a andb are from 0 to 1, we know thatexp is between 9 and 10,
while exp’ falls in the range from 6 to 7. As a result, the Boolean
expressionexp≥exp’ is true. This technique is particularly ef-
fective on dynamic programming based genome computing, which
we discuss in Section 2.3.

Symbol unfolding. As described above, unfolding a symbol can
help simplify that expression. This, however, does not work al-
ways. Consider the following example:d = min(b + c1, b +
c2, b + c3) with b = min(a1, a2, a3). If b is unfolded in the
expression ofd, we need to compare 9 values to getd. In con-
trast, if we first getb and then computed, only 6 comparisons are
needed. In our research, we propose a new reduction rule that un-
folds a symbol only when an expression does not contain new sym-
bols. In the above example, we can unfoldb and ci if ci=1,2,3

only containsa1, a2, a3 or constants: supposec1 = a1 + 5,
c2 = a1 + 6 andc3 = a1 + 8, such an unfolding gives usd =
min(2a1+5, a1+a2+5, a1+a3+5), which needs only 3 compar-
isons to compute. Application of this rule to a dynamic program-
ming algorithm can reduce it to a much simpler residue program
that is also dynamic programming, as elaborated in Section 2.3.

2.3 Analysis
Dynamic programming [14] is an optimization technique widely

used in bioinformatics, particularly for solving fundamental genome
computing problems such as sequence alignment, structural align-
ment and RNA secondary structure prediction. These problems
typically involve two genome sequences,α[1 · · ·n] andβ[1 · · ·m],
and are modeled over ann + 1 by m + 1 matrixD. The objective
is to find an optimal path from(0, 0) to (n, m) that maximizes or
minimizes the scores accumulated from those incurred by individ-
ual moves from(i, j) to (i+1, j) or (i, j+1) or (i+1, j+1). Such
a modeling can also be generalized to a multidimensional graph for
the problem such asmultiple sequence alignment[26], where the
goal is to find an optimal path in the graph. The DPAs for solving
these problems are usually in the following form:

D(i, j) = min(D(i− 1, j) + s1(i, j),

D(i, j − 1) + s2(i, j),

D(i− 1, j − 1) + s3(i, j), C) (2)

whereD(i, j) is the score for the optimal path from(0, 0) to (i, j),
s1(i, j), s2(i, j) ands3(i, j) are the functions that compute a score
given α[i] andβ[j], andC is a constant. This form of optimiza-
tion describes many important bioinformatics algorithms, includ-
ing the famous Needleman-Wunsch [56] and the most widely-used
BLAST 2 [66]. Note that throughout this paper we focus on an
improved version of the DPA first introduced by Gotoh [30], which
reduces the complexity of the DPAs like Needleman-Wunsch and
Smith-Waterman algorithms fromO(mn2) to O(mn), and thus
are commonly used in today’s genome research.

Let ρ be theratio of sensitive nucleotides onβ, andβ[xt=1···ρm]
be these nucleotides. The effectiveness of our specialization tech-
niques on a DPA is described by Theorem 1.

Figure 3: Proof illustration.

THEOREM 1. The queryq(β[x1], · · · , β[xρm]) generated by
specializing a DPA described in Equation 2 is still a DPA. The com-
putational, spatial and communication complexities for answering
the query are at mostO(ρmn2).

Figure 3 illustrates the general idea of the proof, whose full con-
tent is presented in a longer version of the paper [68], due to space
limit. Informally, every unknown nucleotideβ[xt] corresponds to
one columnxt in the(n + 1)× (m + 1) matrix D. Consider two
neighboring columnsxt−1 andxt. A path from(0, 0) to (i, xt), a

cell inxt, must go through one of the cells(0, xt−1), · · · , (i, xt−1)
in xt−1. We call a path from(0, 0) a connection pathfor (l, xt−1)
(0 ≤ l ≤ i) and (i, xt) if the path passes both cells and does
not pass any other cells in columnxt−1 or xt between these two
cells. The optimal connection path (the one with the minimal score)
is composed of the optimal path from(0, 0) to (l, xt−1), and the
path segment between(l, xt−1) and(i, xt) with the lowest score.
Its score can be represented as a linear expression with the sym-
bol D(l, xt−1) and the symbol related toxt, and simplified using
the fact that all nucleotides between the two columns are known.
Particularly, an expression that compares the scores of two differ-
ent connection paths can often be reduced: for example, we know
that a path with a scoreD(l, xt−1) + C1 + s1(i, xt) is better than
the one withD(l, xt−1) + C2 + s1(i, xt) if the constantC1 is
smaller thanC2. The optimal path to(i, xt) is either one of the
i+1 optimal connection paths from(0, xt−1), · · · , (i, xt−1) or the
path passing(i − 1, xt). Seeking the optimal path from(0, 0) to
(n, m), we need to first find values for columnxρm, which depends
on columnxρm−1 and so on. This forms a DPA (See Equation 3
in [68]). ComputingD(i, xt) requires comparing the scores ofi+2
paths (i + 1 optimal connection paths and an additional path from
(i − 1, xt)). Therefore, the complexity for computing unknown
columnxt is O(n2). Since there are totallyρm unknown columns,
the complexity for answering the query becomesO(ρmn2).

Discussion.The complexities of an unspecialized DPA isO(mn)
for both computation and space. More often than not, the optimal
path with at leastm elements needs to be delivered from the DP
to the DC if the whole computation task is delegated to the DP. On
the other hand, most genome computing tasks involve a shortα,
on the order of102, and a longβ, from 106 (a chromosome) to
109 (the whole genome sequence of a human). Therefore, given
ρ < 10−4, the query program generated by our approach can be
hundreds of times more efficient than the original program in terms
of computation and space. Our approach incurs extra communica-
tion overheads: the complexity of the communication from the DC
to the DP can beO(ρmn2). This weakness, however, is compen-
sated by the efficiency of the communication from the DP to the
DC, which is onlyO(ρm). This is because to empower the DC to
figure out the whole optimal path, the DP only needs to disclose
the intersections between the optimal path and unknown columns
x1, · · · , xρm, and for every intersection(i, xt), the one of thei+2
paths that contributes to the value of the cell.

Actually, the theoretic result turns out to be too pessimistic, be-
cause our analysis does not consider the reduction achievable using
the value ranges of expressions: due to the scarcity of unknown
nucleotides, the differences between the constants in the expres-
sions for two optimal connection paths can easily overwhelm the
deviations caused by an unknown symbol; as a result, optimal con-
nection paths from different cells inxt−1 can often be compared
and many of them can be removed from the reduced expression of
D(i, xt). In our experiment, we observed that a query was at least
thousand times more efficient than the original program, in terms
of computation, space and communication (Section 4).

DPA extensions. DPAs used in genome computing can be ex-
tended to improve their performance. Two prominent examples
are Divide-and-Conquer, which is optimized for space efficiency,
and BLAST, which is designed for high performance. The Divide-
and-Conquer algorithm (DCA) [54] first runs a DPA to compute
the first half of matrixD column by column untilj, the column in
the middle of the matrix, and then compute the second half back-
wards from columnn to j. As a result, the intersection between the
optimal path and columnj is identified. Denote the intersection

by (i, j). The same process happens to the matrix between(0, 0)
and(i, j) and the one between(i, j) and(n, m) to find other mem-
bers on the optimal path, which further divides these matrices into
smaller ones. As such, the algorithm can determine every member
on the path. Since computing a column only needs the information
in the prior column, DCA reduces the spatial complexity of a DPA
to O(m + n), at the cost of doubled computation overheads.

The DCA needs to run a DPA over the whole matrix once, which
makes the complexities of the query generated from specialization
stay atO(ρmn2). Apparently, this suggests that the query program
loses the edge in space efficiency. Again, such a theoretic result is
deceiving: the query built upon real data is actually much more
efficient, as observed in our research.

BLAST is a widely-used algorithm for fast searching. It first
searches for high scoring subsequence matchings between the se-
quencesα andβ by seekingwords, a subsequence typically con-
taining 11 nucleotides, with scores above a threshold. Then, the
algorithm extends these words using a DPA to find a locally opti-
mal alignment. Our specialization techniques generate queries for
extending words, which is much more efficient than running the
whole algorithm on the DP. A problem is that the score of a word
is usually calculated using exact match. When a word matches a
sequence involving sensitive nucleotides, these nucleotides will be
exposed, which could cause a computation to fail. Fortunately, the
number of sensitive nucleotides in a givenβ is usually very small,
and as a result, the chance that a word in a shortα matches a se-
quence involving such nucleotides is very low.

2.4 Query Auditing
Our framework adopted a simple security policy to control infor-

mation leaks from the outcomes of a computation. The policy spec-
ifies athresholdfor a query, the maximal number of SNPs whose
values can be revealed. For each query, the DP first runs a query
auditor to evaluate the amount of information that could be leaked
out by the answer: if it goes above the threshold, the DP refuses to
respond; otherwise, the query is allowed to be answered. The query
auditor can be as simple as a constraint solver: given a query and
its answer as a constraint, it attempts to determine whether the con-
straint can only be satisfied when some SNPs take unique values;
when this happens, these SNPs are deemed disclosed if the answer
is given to the DC. For example, consider a queryq for an edit
distance, whose answer is 5; if the auditor finds that to satisfy the
constraint “q = 5”, a SNP must be ‘A’, it concludes that the SNP
will be disclosed by the answer. In Section 4, we demonstrate that
this simple technique actually worked on realistic computations.

The action of denying a query itself can leak information: at the
very least, an attacker knows that the answer to her query can be
used to determine at leastt SNPs, wheret is the threshold. How-
ever, by setting the threshold well below the number of SNPs in-
volved, we can make it difficult for the attacker to find out exactly
which t SNPs can be determined. In general, however, we do not
want to claim that this approach is a perfect solution. Instead, it is
just a component of our framework and can be replaced with other
existing technologies for query auditing [55, 40] and inference con-
trol [40, 55, 50, 51, 31, 24]. Study of these technologies’ efficacy
under our framework is left as future research.

2.5 Secure Multi-party Computation
The DC’s sequenceα may contain sensitive nucleotides that can-

not be revealed to the DP. When this happens, a query needs to be
answered without leaking out sensitive inputs from bothα andβ,
which can be achieved using secure multi-party computation [69,
29]. Direct application of SMC onα andβ, however, can intro-
duce huge performance overheads, making the approach hard to

scale [34]. Our solution is to use nonsensitive data on bothα andβ
to specialize a computation, reducing its complexity. Specifically,
let the set of sensitive nucleotides onα be{α[yτ]}, and the set for
β be{β[xt]}. These nucleotides are all marked as symbols on the
sequences. Performing a mixed execution on them, the DC can ac-
quire a queryq with {α[yτ]} and{β[xt]} as inputs. Such a query is
typically much more efficient than the original program, as demon-
strated in our experimental studies (Section 4). To seek the answer
for q, the DC converts it into a circuitQ and further encrypts it to
create a “garbled circuit”Q′. OverQ′, the DC and the DP can run
an SMC to compute the answer to the query. Compared with the
prior work [34], our approach is much more efficient, asQ′ can
be very small, and therefore can handle a computation task with a
much larger scale (on the order of tens of thousands of nucleotides).

A problem here is that SMC does not offer protection to the in-
formation revealed by the outcome of a computation. A solution
can be to let the DP evaluate the unencrypted circuitQ without ac-
cess to{α[yτ]} before SMC happens. This is feasible becauseα
is usually very short, involving only a few hundreds of nucleotides,
and as a result, typically no more than 5 of them are SNP [43].
Therefore, the DP can check all45 possible combinations of these
nucleotides to ensure that none of them will cause the answer forq
to violate privacy policies, for example, exposing more nucleotides
than permitted by a threshold. In the case that the size of{α[yτ]}
is large, a solution could be randomly sampling some of combina-
tions for policy verification. Note that we can hide the outcome of
such a computation from the DP, which eliminates the concern of
leaking the DC’s data to the DP through the outcomes. The effec-
tiveness of such an approach, however, needs to be further studied
in the future research.

3. PROGRAM TRANSFORMATION
This section describes a tool for transforming legacy biocom-

puting code into a new program to perform mixed executions on
sanitized genome sequences. Our current design is for converting
Java programs, but the idea behind it can work on the programs in
other languages. We also implemented a prototype using Java.

To transform a Java program, our tool takes the following steps.
It first runs a transformation tool such as Java2XML [3] to convert
the source code into anabstract syntax tree(AST) that describes
the structure of the program [12]. The AST representation clearly
indicates different elements of the program, including variables and
statements, and their relations, in particular execution flows, over
which a taint analysisis performed to find out all the elements
tainted by sensitive nucleotides. These elements are further in-
strumented with specialization code to support mixed executions.
Finally, the transformed AST is converted into a new Java program
through XSLT stylesheet [12].

3.1 Taint Analysis
The objective of taint analysis is to identify all statements and

variables affected by sensitive nucleotides. The statements in a pro-
gram that import these data are manually annotated as taint sources.
Starting from them, our approach statically analyzes the propaga-
tion of tainted data on the AST in accordance with a set of propaga-
tion rules. Such a rule is in the form of(s,i,o,e) , in whichs is
a statement,i ando represent the input and the output of the state-
ment respectively, ande is a Boolean value that indicates whether
execution of the statement will cause taint to be propagated fromi
to o. For instance, the rule(=, value, variable, true)
specifies that an assignment statement (“=”) will propagate taint
from its input (value) to its output (variable).

Let V be the set of tainted variables andS be the set of tainted

statements. These sets include only the taint sources at the begin-
ning of an analysis. During the analysis, our analyzer checks every
element on the AST according to the execution flow of the program,
identify tainted variables and the statements that operate on these
variables using propagation rules, and put them toV andS respec-
tively. Some statements need special treatment. Specifically, our
analyzer forks threads to explore different branches of a branching
statement to the point where they converge. For a loop statement,
we need to consider the propagation of taint across different iter-
ations. Consider the example in Figure 2 from Line 15 to 18 of
P1, in whichmin(a, b, c) is computed by first comparinga andb
to find the smaller one and then comparing it withc. These opera-
tions are embedded in the loop from Line 2 and 7. An interesting
observation is that ifc is tainted, the first iteration of the loop only
taints the statement at Line 17 and arrayD. However, the next iter-
ation sees the statement at Line 16 also become tainted because this
time, D is tainted. Our solution to the problem is to statically an-
alyze the loop iteration by iteration, until no new tainted variables
or statements are discovered.

Another important issue we had to deal with is propagation of
taint throughcontrol flow. This happens when a branch condition
becomes tainted. As a result, sensitive inputs could affect the use
of the statements and variables within thescope[5] of the branch-
ing, that is, part of the program between the condition and the pro-
gram location where all branches converge. For example, the score
function S1 in Figure 2 contains a branch that a comparison be-
tween two nucleotides, one of which can be sensitive, determines
the score it returns. In this case, we taint all the variables within the
scope of the branching to be used posterior to the statement. For
the example in Figure 2, the output ofS1 is tainted.

3.2 Code Instrumentation

Figure 4: Integer variable transformation.

Tainted program elements need to be transformed to enable a
mixed execution. This was achieved in our research through replac-
ing a tainted variable with a class that accepts both concrete val-
ues and a symbolic expression, and transforming tainted statements
into the forms that can work on these variables. Figure 4 presents
an example, in which an integer variableI is converted into a new
type IntSymbol , a class accepting both concrete and symbolic
values. To perform an operation on such a variable, proper instru-
mentation needs to be done to operators, such as assignment and
addition. In Figure 4, an assignment of a value toI is modified
to be performed byassign() ,the method ofIntSymbol : the
method does the normal assignment when its input is concrete, and
maintains and reduces an expression when the input is symbolic.

A tainted statement is replaced with a code snippet according
to its type, as described in Section 2.2. A problem is that a pro-
gram could call a function from other libraries whose source code
may not be available. This is tackled by our instrumentation tool
through redirecting such a call to a wrapper of the function being
called. The wrapper checks the parameters of the call: if any of

them is symbolic, it returns a new symbol to enable the follow-up
operations and residualizes the call; otherwise, it passes the param-
eters to the callee.

4. EVALUATION
This section reports an empirical study of the techniques we pro-

pose. The genome sequences used in our study came from the hu-
man genome dataset in UCSC Genome Browser [39], the latest
Build 36.1 assembled on March 2006. We extracted segments from
the dataset and truncated them into sequences of different sizes
for our experiments. These sequences were sanitized by replacing
their SNP nucleotides, as indicated by the International HapMap
Project [27], with symbols.

4.1 Program Transformation
We ran our program-transformation prototype on 7 Java-based

DPA implementations, including 3 bioinformatics libraries and 4
synthesized programs, as illustrated in Table 1. Our prototype trans-
formed all synthesized programs and most part of the libraries. The
new programs and the queries they generated were evaluated using
genome data, and their outcomes were found to be identical with
those produced by running the original programs on unprotected
sequences. This indicates that the transformation was sound. Fol-
lowing we describe our experiences with the Java libraries.

NeoBio [22] is a Java library including three pair-wise alignment
algorithms, Needleman-Wunsch [56], Smith-Waterman [64], and
Crochemore-Landau-Ziv-Ukelson [21]. Our tool failed to trans-
form the last one because it intensively uses tainted addresses: it
performs computation upon a double-linked list constructed based
on the values of individual nucleotides. As a result, our analyzer
found that nearly all the statements of the algorithm had to be resid-
ualized. This problem comes from the limit support our current de-
sign offers for symbolic addresses, which will be addressed in our
follow-up research.

Argo genome browser [1] includes 48 class files to support both
global and local alignment algorithms. Most of the classes, how-
ever, are different designs of score functions, which can be residual-
ized without incurring noticeable performance overheads to a query
program. The library was successfully converted by our prototype
and evaluated in our experiments. The same success also happened
to JAligner [2], a Java implementation of the Smith-Waterman al-
gorithm with Gotoh’s improvement. An interesting property of this
algorithm is that it maintains a(n+1)×(m+1) matrix to record the
neighbor of each cell that contributes to its value. This simplifies
the “backtracking” process for identifying the optimal path. During
the program’s runtime, our specialization code assigned symbols to
cells after unknown nucleotides were encountered. The concrete
values of these cells were calculated from the DP’s answer to the
query exported by the program, which included the intersections
between the optimal path and unknown columns, and the symbolic
expressions contributing to the values of these intersections.

4.2 Performance
We ran the transformed programs on real genome sequences to

study their performance. Our experiments were conducted on two
laptops, each with a 1.8G Intel Core 2 Duo CPU and 2 GB memory.
One of these laptops was used as the DP, and the other as DC.
They communicated with each other through a local network. In
the experiments, we measured the computation time and memory
use for both mixed executions on sanitized data that happened on
the DC side, and executions of the queries generated thereby on the
DP side. Such information was compared with the computational
and spatial overheads for directly running the original programs on
unprotected data, which served as baselines. We also recorded the

communicational overheads incurred by the interactions between
the DP and the DC.

Table 2 illustrates the experimental results, in which the problem
sizes are described as(n, m), wheren andm represent the sizes of
α (the DC’s sequence) andβ (the DP’s sequence) respectively. Our
experiments include an edit distance (row 1), 2 global alignments
(row 2 and 3), 4 local alignments (row 4 to 7), longest common
sequence (LCS) identification (row 8) and 1 multiple alignment.
The multiple alignment algorithm computes over three sequences.
The last one belongs to the DP and contains one SNP. The problem
sizes we chose ranged from hundreds of nucleotides to a million
of nucleotides. The number of sensitive nucleotides onβ varied
according to the problem sizes, from a single one to 1056. In the
table, the baseline results are labeled as “Native”.

The table shows that the mixed execution did take a noticeable
toll on the DC’s performance. Compared with the baseline, trans-
formed programs were typically one order of magnitude slower and
consumed more memory. Such a raise of overheads culminated in
the experiment involving the Needleman-Wunsch algorithm from
the NeoBio library, which brought in a slow down factor of 64
and used 28 times more memory. However, the DC’s cost seems
to be compensated by the huge performance gain on the DP side:
the query programs generated by the DC were so efficient that they
were at least 10000 times faster than the baseline and typically con-
sumed much less memory. Actually, computing the answer for a
query never took more than 100 microseconds. Particularly, the
transformed Divide-and-Conquer algorithm (row 8) even enabled
the DC to accomplish the computation without querying the DP at
all. This is because in that experiment, the constant in Equation 2
was found to be below the value ranges of all symbolic expressions,
and as a result, a concrete outcome ensued. Note this would not
be possible without specialization. Moreover, the communication
overheads were also found to be very low. This is in a stark con-
trast with the conservative estimate made in our theoretic analysis
(Section 2.3), which predicts much higher overheads.

4.3 Information Leaks
We also evaluated the information leaks that can be caused by

releasing the outcomes of query programs, using a query auditor
built upon a constraint solver [25]. The outcomes are shown in Ta-
ble 3. This study was conducted under three scenarios: an answer
includes only a value (e.g., an edit distance), a path for optimal
alignment or both. From the table, we can see that the amount of
information disclosed by answers is pretty low: ranging from 0% to
1.8%. The performance of constraint solving was also reasonable:
from 0.001 to 0.3 seconds.

4.4 Secure Multi-party Computation
We studied how our specialization techniques could facilitate se-

cure multi-party computation when the DC’s sequenceα also con-
tains sensitive nucleotides. In our experiment, we ran the trans-
formed edit-distance program on the sanitized sequencesα andβ,
whose SNP nucleotides were replaced by symbols. This produced a
query program, which was converted into a “garbled circuit” using
a tool we developed. After that, the DP and the DC ran an SMC
protocol [34] to evaluate the circuit. In the experiment, we mea-
sured the accumulated computation time and memory use on the
DC side, including those for program specialization and running
the SMC protocol, as well as the overheads on the DP side for per-
forming its part of the protocol. These results were compared with
the overheads of running an optimized SMC protocol [34] directly
onα andβ. The optimized SMC protocol we used is an implemen-
tation of Protocol 3 proposed in the prior work [34]. The protocol
is recommended for computing large-size problems, as it strikes a

Table 1: Transformed programs.
Program Name Source # of Class Files Included Algorithms

NeoBio library 22 Needleman-Wunsch,Smith-Waterman,Crochemore-Landau-Ziv-Ukelson

Argo genome browser library 48 Global Alignment, Local Alignment

JAligner library 16 Smith-Waterman algorithm with Gotoh’s improvement

Edit Distance synthesized 1 Edit Distance

Blast synthesized 2 Blast

Divide-and-Conquer synthesized 2 Divide-and-Conquer

Multiple Alignment synthesized 1 Multiple Alignment

Table 2: Performance.

Algorithm Problem Size SNP
Native DC DP

Bandwidth
Time(s) Mem(MB) Time Mem Time Mem (KB)

Edit Distance 400×400 2 0.523 3.665 28.526 46.915 0.000033 1.536 1.841

NeoBio Needleman 400×400 2 0.665 2.052 42.465 56.897 0.000078 2.740 2.760

Argo Global Alignment 400×400 2 0.801 3.432 46.151 44.736 0.000054 2.740 2.535

NeoBio Waterman 200×100000 55 95.664 87.830 1009.029 626.167 0.000014 2.740 1.968

Blast 200×100000 55 2.416 18.624 64.286 49.893 0.000019 2.740 2.017

Argo Local Alignment 200×100000 55 109.132 133.521 1512.368 661.880 0.000017 2.740 1.996

JAligner Waterman 200×100000 55 27.056 124.215 1637.066 604.712 0.000016 2.740 1.968

Divide-and-Conquer 200×1000000 1056 646.909 34.738 6857.100 168.808 0 0 0

Multiple Alignment 100×100×100 1 6.545 6.606 394.865 113.188 0.000021 2.052 2.038

balance between computation time and memory use [34]. We also
recorded the bandwidth consumptions for both our approach and
the prior approach. The results are presented in Table 4.

As illustrated by Table 4, the optimized SMC protocol took more
than an hour and 2.56GB bandwidth to deal with a200 × 1000
problem. This is actually not necessary, as real genome sequences
of such sizes typically contain very few sensitive nucleotides. In
contrast, our approach first specialized the computation to a much
smaller problem and then performed SMC on it. Though the SMC
protocol we used was not optimal, we achieved a significantly bet-
ter performance: a little more than 106 seconds in computation
time and merely 5.2 KB in bandwidth usage. When the problem
size grew to300× 10000, direct application of SMC to the whole
sequences could not finish the computation in 3 hours, while our
approach accomplished the task within 411 seconds with 13.9KB
bandwidth consumption. This result demonstrates that our approach
can offer more practical privacy protection for genome computing.

5. DISCUSSION
Beside the threshold policy, our framework is open to other pri-

vacy policies [46, 44, 33] for regulating information leaks from
outcomes of a computation. We feel that there is reason to expect
these policies and their enforcement, which have been extensively
studied in database security, to be successfully combined into our
approach, as the interactions between the DP and the DC does not
have any substantial difference from those between clients and a
database. However, it remains to be seen how effectively and effi-
ciently these techniques work under our framework, which is left
as future research.

Though DPAs are among the most important building blocks for
computational genomics, there are many other algorithms that need
to be further studied. For decades, program specialization has been
proven to be valuable to the research on a wide variety of areas,
including compiler generation [36], computer graphics [49] and
others. We expect the same success in applying the techniques to
genomic computations. On the other hand, it is also important to
understand the limitations of specialization techniques. For exam-

ple, some data structures such as suffix trees [48] can be hard to
specialize because to correctly build these structures, the DC may
have to know the exact values of every genome strings, including
those carrying sensitive information.

Our program-transformation tool is designed for Java. Actually,
C is more pervasive in genomic computation, due to its high perfor-
mance. Given its complicated structure, in particular, extensive use
of pointers,C programs can be more difficult to transform. Prior
research [8] studies specialization of part ofC, which we can take
advantage of. Such work, however, is more about partial evaluation
at compiling time than offline transformation for run-time special-
ization of existing code, which is our focus.

6. RELATED WORK
Privacy preserving computations over genome data have been

studied recently. Most prior approaches are based on cryptographic
protocols [10, 34, 15]. A prominent example is the recent work
that optimizes SMC techniques for computing DPA-based bioin-
formatics algorithms [34]. This approach significantly improves
the efficiency of SMC and is demonstrated to be very effective on
small-scale computing tasks, such as global alignment involving
hundreds of nucleotides. However, it is unable to deal with a large-
scale computation, as demonstrated in Section 4. Another approach
is distributed Smith-Waterman algorithm [65] that decomposes a
computation problem into small sub-problems and allocates them
to multiple problem solvers. This technique, however, leaks more
information than what is revealed by the outcome of a computa-
tion, and offers little privacy guarantee. In contrast, our approach
takes advantage of the fact that a genome sequence is actually a
mixture of public and sensitive data, and only a very small portion
of it needs protection. As a result, we can simplify a computation
to the extent that millions of nucleotides can be easily handled and
information leaks can be effectively assessed.

Information flow security was proposed decades ago [23, 13]
and its application to programming languages like Java has also
been studied for many years. A prominent example is Jif [52, 53],
a security-typed programming language that supports information-

Table 3: Information Leakage.

Algorithm Problem Size SNP
Value Path Value and Path

Leakage(%) Time(s) Leakage(%) Time(s) Leakage(%) Time(s)

Edit Distance 400×400 2 0 0.053 0 0.063 0 0.070

NeoBio Needleman 400×400 2 0 0.274 0 0.209 0 0.304

Argo Global Alignment 400×400 2 0 0.249 0 0.196 0 0.291

NeoBio Waterman 200×100000 55 1.8 0.010 1.8 0.010 1.8 0.005

Blast 200×100000 55 1.8 0.007 1.8 0.003 1.8 0.011

Argo Local Alignment 200×100000 55 1.8 0.003 1.8 0.005 1.8 0.001

JAligner Waterman 200×100000 55 1.8 0.008 1.8 0.008 1.8 0.004

Divide-and-Conquer 200×1000000 1056 0 0 0 0 0 0

Table 4: Facilitation of secure multi-party computation.
SNP Optimized SMC [34] Our Approach

Problem Size
DP DC Time Mem Bandwidth

DP DC
Bandwidth

Time Mem Time Mem

200× 1000 3 1 1h5min 5.95MB 2.56GB 392.5ms 5.12MB 106.2s 62.3MB 5.2KB

300× 10000 4 2 >3h n/a n/a 537ms 5.12MB 410.5s 223.2MB 13.9KB

flow (IF) control within Java. Jif is designed for enforcing different
IF policies in a program, which is more than we need. Therefore,
we did not build our prototype over it, and instead, implemented
our own lightweight tool for taint analysis. Based on Jif, Swift [18]
uses IF analysis to separate an application according to security
policies. This is insufficient for our purpose, because for the bio-
computing algorithms like DPA, the part of the computation on the
sensitive data can be intertwined with that on the public data. For
example, a static IF analysis on a DPA could taint all the statements
once the program receives a single sensitive nucleotide. As a result,
the whole program has to be placed on the DP side, which is exactly
what we intend to avoid.

Program specialization and partial evaluation have been studied
for decades [35, 19, 20, 62, 60, 28], and are extensively used in
compiler generation, real-time systems and many other areas [36,
57, 19, 20, 37, 41, 49, 11]. To our knowledge, our approach is the
first attempt to apply program specialization to privacy-preserving
genomic computations. For this purpose, we propose new special-
ization techniques tuned to the properties of genome data, includ-
ing the rules for reducing Boolean expressions with value ranges
and determining when to unfold a symbol. We prove the effective-
ness of these techniques on a category of DPAs that are common
in genome computing. Moreover, different from existing partial
evaluators [35] that work at the compiling stage, our approach spe-
cializes an algorithm at runtime. This aligns our approach with
the techniques for dynamic code generation [59]. However, unlike
these techniques, we do not rely on a language to define the way
to generate new programs, and instead, use program analysis to
retrofit legacy programs for specialization operations.

7. CONCLUSION
This paper presents an innovation that makes an important step

toward practical privacy-preserving genomic computations. Our
approach is based upon the fact that only a very small portion of
human genome contains sensitive information. Therefore, a data
provider can announce sanitized genome sequences to enable com-
putations on pubic data, and answers the queries about sensitive
data when its privacy policy permits. These queries are generated
in our research through program specialization. We theoretically
analyzed the effectiveness of our approach on a set of DPAs com-
mon in computational genomics, and experimentally demonstrated

its capability to handle the computation tasks with practical scales.
We developed a program transformation tool to automatically con-
vert existing bioinformatics programs to the forms capable of per-
forming privacy-preserving operations. We also studied how our
techniques can facilitate SMC on genome computing problems.

8. ACKNOWLEDGEMENTS
We thank Louis Kruger, Somesh Jha, and Vitaly Shmatikov for

sharing with us the code for optimized SMC [34]. This work was
supported in part by the National Science Foundation the Cyber
Trust program under Grant No.CNS-0716292 .

9. REFERENCES
[1] Argo genome browser.

http://www.genome.wi.mit.edu/annotation/argo/ .
[2] Jaligner: java implementation of the smith-waterman algorithm for biological

sequence alignement.http://jaligner.sourceforge.net/ .
[3] Java2xml : A java to xml converter.

https://java2xml.dev.java.net/ .
[4] Genetic variation program.http://www.genome.gov/10001551 , 2008.
[5] F. E. Allen. Control flow analysis. InProceedings of a symposium on Compiler

optimization, pages 1–19, 1970.
[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local

alignment search tool.J Mol Biol, 215(3):403–410, 1990.
[7] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and

D. J. Lipman. Gapped blast and psi-blast: a new generation of protein database
search programs.Nucleic Acids Res, 25(17):3389–3402, Sep 1997.

[8] L. O. Andersen. Program analysis and specialization for the c programming
language. Phd thesis, Department of Computer Science, University of
Copenhagen, May 1994.

[9] S. Artzi, A. Kiezun, and N. Shomron. miRNAminer: a tool for homologous
microRNA gene search.BMC Bioinformatics, 9:39, 2008.

[10] M. J. Atallah, F. Kerschbaum, and W. Du. Secure and private sequence
comparisons. InWPES ’03: Proceedings of the 2003 ACM workshop on
Privacy in the electronic society, pages 39–44, New York, NY, USA, 2003.
ACM.

[11] W.-Y. Au, D. Weise, and S. Seligman. Generating compiled simulations using
partial evaluation. InDAC ’93: Proceedings of the 28th Design Automation
Conference, pages 205–210, New York, NY, USA, 1991. IEEE.

[12] G. J. Badros. Javaml: a markup language for java source code. InProceedings
of the 9th international World Wide Web conference on Computer networks :
the international journal of computer and telecommunications netowrking,
pages 159–177, Amsterdam, The Netherlands, The Netherlands, 2000.
North-Holland Publishing Co.

[13] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical
foundations. Technical Report ESD-TR-73-278, Hanscom AFB, Bed-ford,
Mass., November 1973.

[14] R. Bellman. Dynamic programming.Science, 153(3731):34 – 37, 1966.

[15] F. Bruekers, S. Katzenbeisser, K. Kursawe, and P. Tuyls. Privacy-preserving
matching of dna profiles. Technical Report Report 2008/203, ACR Cryptology
ePrint Archive, 2008.

[16] D. Brumley and D. Song. Privtrans: Automatically partitioning programs for
privilege separation. InProceedings of the 13th USENIX Security Symposium,
August 2004.

[17] N. E. Castellana, S. H. Payne, Z. Shen, M. Stanke, V. Bafna, and S. P. Briggs.
Discovery and revision of Arabidopsis genes by proteogenomics.Proc. Natl.
Acad. Sci. U.S.A., 105:21034–21038, Dec 2008.

[18] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng.
Secure web application via automatic partitioning. InSOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles, pages
31–44, New York, NY, USA, 2007. ACM.

[19] C. Consel and O. Danvy. Tutorial notes on partial evaluation. InPOPL ’93:
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 493–501, New York, NY, USA, 1993. ACM.

[20] C. Consel and S. C. Khoo. Semantics-directed generation of a prolog compiler.
Sci. Comput. Program., 21(3):263–291, 1993.

[21] M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence
alignment algorithm for unrestricted cost matrices. In13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 02), 2002.

[22] S. A. de Carvalho Junior. Neobio - bioinformatics algorithms in java.
http://neobio.sourceforge.net/ .

[23] D. E. Denning. A lattice model of secure information flow.Commun. ACM,
19(5):236–243, 1976.

[24] J. Domingo-Ferrer, editor.Inference control in statistical databases: From
theory to practice. Springer, 2002.

[25] B. Dutertre and L. Moura. The YICES SMT Solver.
http://yices.csl.sri.com/ , as of 2008.

[26] R. C. Edgar and S. Batzoglou. Multiple sequence alignment.Current Opinion
in Structural Biology, 16(3):368–373, 2006.

[27] R. Gibbs. The international hapmap project.Nature (London), 426:789, 2003.
[28] R. Glück and J. Jorgensen. Efficient multi-level generating extensions for

program specialization. InPLILPS ’95: Proceedings of the 7th International
Symposium on Programming Languages: Implementations, Logics and
Programs, pages 259–278, London, UK, 1995. Springer-Verlag.

[29] O. Goldreich, S.Micali, and A.Wigderson. How to play any mental game. In
STOC, 1987.

[30] O. Gotoh. An improved algorithm for matching biological sequences.J Mol
Biol, 162(3):705–708, December 1982.

[31] V. Goyal, S. K. Gupta, and A. Gupta. A unified audit expression model for
auditing sql queries. InProceeedings of the 22nd annual IFIP WG 11.3 working
conference on Data and Applications Security, pages 33–47, Berlin,
Heidelberg, 2008. Springer-Verlag.

[32] N. Gupta, S. Tanner, N. Jaitly, J. N. Adkins, M. Lipton, R. Edwards,
M. Romine, A. Osterman, V. Bafna, R. D. Smith, and P. A. Pevzner. Whole
proteome analysis of post-translational modifications: applications of
mass-spectrometry for proteogenomic annotation.Genome Res., 17:1362–1377,
Sep 2007.

[33] J. N. Hirschhorn and M. J. Daly. Genome-wide association studies for common
diseases and complex traits.Nature Reviews Genetics, 6(2):95–108, February
2005.

[34] S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic
computation. In2008 IEEE Symposium on Security and Privacy, 2008.

[35] N. Jones, C. Gomard, and P. Sestoft.Partial Evaluation and Automatic Program
Generation, C.A.R. Hoare Series. Prentice-Hall, 1993.

[36] N. D. Jones, P. Sestoft, and H. Sondergaard. An experiment in partial
evaluation: the generation of a compiler generator. InProc. of the first
international conference on Rewriting techniques and applications, pages
124–140, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[37] J. Jorgensen. Generating a compiler for a lazy language by partial evaluation. In
POPL ’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 258–268, New York, NY, USA,
1992. ACM.

[38] O. Keller, F. Odronitz, M. Stanke, M. Kollmar, and S. Waack. Scipio: using
protein sequences to determine the precise exon/intron structures of genes and
their orthologs in closely related species.BMC Bioinformatics, 9:278, 2008.

[39] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M.
Zahler, and D. Haussler. The human genome browser at ucsc.GENOME
RESEARCH, 25(6):996–1006, 2002.

[40] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. InPODS ’05:
Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 118–127, New York, NY, USA, 2005.
ACM.

[41] S. C. Khoo and R. S. Sundaresh. Compiling inheritance using partial evaluation.
In PEPM ’91: Proceedings of the 1991 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, pages 211–222, New
York, NY, USA, 1991. ACM.

[42] J. C. King. Symbolic execution and program testing.Commun. ACM,

19(7):385–394, 1976.
[43] L. Kruglyak and D. Nickerson. Variation is the spice of life.Nat. Genet.,

27:234–236, Mar 2001.
[44] N. Li and T. Li. t-closeness: Privacy beyond k-anonymity and âĎŞ-diversity. In

In Proceedings of IEEE International Conference on Data Engineering, 2007.
[45] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology

search.Bioinformatics, 18(3):440–445, Mar 2002.
[46] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam.

L-diversity: Privacy beyond k-anonymity.ACM Trans. Knowl. Discov. Data,
1(1):3, 2007.

[47] B. Malin. Protecting dna sequence anonymity with generalization lattices.
Technical Report CMU-ISRI-04-134, Carnegie Mellon University, As of
October 2007.

[48] E. M. McCreight. A space-economical suffix tree construction algorithm.J.
ACM, 23(2):262–272, 1976.

[49] T. Mogensen. The appliation of partial evaluation to ray-tracing. Master thesis,
DIKU, University of Copenhagen, 1986.

[50] R. Motwani, S. Nabar, and D. Thomas. Auditing a batch of sql queries.Data
Engineering Workshop, 2007. IEEE 23th International Conference on, pages
186–191, April 2007.

[51] R. Motwani, S. Nabar, and D. Thomas. Auditing sql queries.Data Engineering,
2008. ICDE 2008. IEEE 24th International Conference on, pages 287–296,
April 2008.

[52] A. C. Myers. Jflow: Practical mostly-static information flow control. InIn Proc.
26th ACM Symp. on Principles of Programming Languages (POPL, pages
228–241, 1999.

[53] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label
model.ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.

[54] E. W. Myers and W. Miller. Optimal alignments in linear space.CABIOS,
4:11–17, 1988.

[55] S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani. Towards
robustness in query auditing. InVLDB ’06: Proceedings of the 32nd
international conference on Very large data bases, pages 151–162. VLDB
Endowment, 2006.

[56] W. C. Needleman SB. A general method applicable to the search for similarities
in the amino acid sequence of two proteins.J Mol Biol, 48(3):443–453, 1970.

[57] V. Nirkhe and W. Pugh. Partial evaluation of high-level imperative
programming languages with applications in hard real-time systems. InPOPL
’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 269–280, New York, NY, USA, 1992. ACM.

[58] G. Pavesi, F. Zambelli, C. Caggese, and G. Pesole. Exalign: a new method for
comparative analysis of exon-intron gene structures.Nucleic Acids Res.,
36:e47, May 2008.

[59] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. C and tcc: a
language and compiler for dynamic code generation.ACM Trans. Program.
Lang. Syst., 21(2):324–369, 1999.

[60] T. W. Reps and T. Turnidge. Program specialization via program slicing. In
Selected Papers from the Internaltional Seminar on Partial Evaluation, pages
409–429, London, UK, 1996. Springer-Verlag.

[61] R. G. Sadygov, D. Cociorva, and J. R. Yates. Large-scale database searching
using tandem mass spectra: looking up the answer in the back of the book.Nat.
Methods, 1:195–202, Dec 2004.

[62] U. P. Schultz, J. L. Lawall, C. Consel, and G. Muller. Towards automatic
specialization of java programs. InECOOP ’99: Proceedings of the 13th
European Conference on Object-Oriented Programming, pages 367–390,
London, UK, 1999. Springer-Verlag.

[63] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison,
D. Haussler, and W. Miller. Human-mouse alignments with blastz.Genome
Res, 13(1):103–107, Jan 2003.

[64] W. M. Smith TF. Identification of common molecular subsequences.J Mol Biol,
147:195, 1981.

[65] E. Szajda, M. Pohl, J. Owen, and B. Lawson. Toward a practical data privacy
scheme for a distributed implementation of the smith-waterman genome
sequence comparison algrotihm. InProceedings of the 12th Annual Network
and Distributed System Security Symposium (NDSS 06), 2006.

[66] T. A. Tatusova and T. L. Madden. Blast 2 sequences - a new tool for comparing
protein and nucleotide sequences.FEMS Microbiology Letters, 174:247–250,
1999.

[67] D. Tsur, S. Tanner, E. Zandi, V. Bafna, and P. A. Pevzner. Identification of
post-translational modifications by blind search of mass spectra.Nat.
Biotechnol., 23:1562–1567, Dec 2005.

[68] R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong.
Privacy-preserving genomic computation through program specialization.
Technical Report IUCS-TR679, Indiana University, 2009.

[69] A. Yao. How to generate and exchange secrets. InFOCS, 1986.

