Privacy-Preserving Genomic Computation Through
Program Specialization

Rui Wang!, XiaoFeng Wang*, Zhou Li', Haixu Tang', Michael K. Reiter?, Zheng Dong!
Indiana University at Bloomington.
2University of North Carolina at Chapel Hill.

ABSTRACT ever, do not come without introducing new concerns: genomic data

In this paper, we present a new approach to performing impor- €Y sensitive personal information such as genetic markers for
tant classes of genomic computations (e.g., search for homologousd'se_ases' wh_osg co_nﬁdentlallty IS threatened. by the increasing col-
genes) that makes a significant step towards privacy protection in lection and dlst_rlbutlon ‘?f those data for medical resea_n_:h. To pro-

this domain. Our approach leverages a key property of the human t€Ct genome privacy, prior research suggests anonymizing genome

genome, namely that the vast majority of it is shared across humansdata before releasing them, through techniques such as DNA lattice

(and hence public), and consequently relatively little of it is sensi- ano_nym_ization [.47]' Such an approach, however, re_duces the ir_lf_or-
tive. Based on this observation, we propose a privacy-protection mation in the original data and as a result, undermines their utility
framework that partitions a genomic computation, distributing the for genome research. . . i,

part on sensitive data to the data provider and the part on the pu-. A stralghtforward approach that avoid Q|scI05|ng sensitive data
bic data to the user of the data. Such a partition is achieved through!nVoved in a computation to the party using the data (catlath

program specialization that enables a biocomputing program to per- conhsumeror DC).AS, to :;lmgly dEIe?lZ;Z all the.c;:omputatlonht‘asks
form a concrete execution on public data and a symbolic execution to the party providing the data (_ca _ta provideror DP). This
on sensitive data. As a result, the program is simplified into an effi- centralized treatment, however, is unviable because the DP can eas-

cient query program that takes only sensitive genetic data as inputs.in become_g pe_rformanc_e bottleneck. In the case that_the DC also
We prove the effectiveness of our techniques on a set of dynamic holds_ sensitive inputs to its computation, a secure multi-party com-
programming algorithms common in genomic computing. We de- puta.mon (SMC) [69, 29] needs to be performed between thege Fwo
velop a program transformation tool that automatically instruments parties. Unfortunately, recent research shows that even optimized
a legacy program for specialization operations. We also demon- SMC cannot handle genome computations of a realistic scale [34],

strate that our techniques can greatly facilitate secure multi-party which oft_en involve millions of m_JcIeotides.
computations on large biocomputing problems Many important genome studies, such as search of homologous

genes [6, 7, 38, 58, 9], comparison of syntenic regions across multi-
ple genomes [63, 45], and protein identification in proteomics [61,

Categones and SUbJeCt Descrlptors 67, 32, 17], utilize dynamic programming [64] and other algorithms

K.6.5 [Security and Protectior]: Unauthorized access to compare a query DNA or protein sequence with genomic se-
guences in a genome database. For example, in order to determine
General Terms the level of variation of a specific gene in the population, a DC may
) request to compare a query gene sequence from a reference genome
Security with its homologous gene sequences from all individual genomes
in a personal genome database. The privacy problem here is that
Keywords these genomes contain some sensitive genetic variations, which are

Privacy-Preserving Computation, Program Specialization, Human gl?litlzarrie;tc?r? tf;g}%:;;ggﬁfgfnerﬁg%?;;pzfgs(seﬂiz)s, [4'?I]1'e:e
Genome, Symbolic Execution, Dynamic Programming, Secure Multi=_ " " . . S pecies.
. variations can be used to identify individuals and their personal
Party Computation . : >
health information such as genetic diseases, and therefore should

1. INTRODUCTION not be exposed to the DC. On the other hand, it is well known

Recent progress in the study of the human genome has led to athat genetic variations represent only a small fraction of the entire
revolution in biomedical science, which promises a profound im- human genome, as indicated by prior research [4] (0.5 percent be-

pact on many aspects in people’s lives. These advances, how-Ween two unrelated persons), and our analysis in the Appendix
(0.01 percent among a population of 1 million). Though the sen-
sitivity of individual SNPs [43] are yet to be determined, we can
adopt a conservative approach that treats all SNPs as sensitive data.
Permission to make digital or hard copies of all or part of this work for Even in this case, nearly all human genes consist of a vast majority
personal or classroom use is granted without fee provided that copies areof common (and definitely non-sensitive) nucleotides that serve as
not made or distributed for profit or commercial advantage and that copies part of the inputs to aforementioned research.
bear this notice and the full citation on the first page. To copy otherwise, 1o~ The apove observation can be leveraged to protect sensitive ge-
Lieumﬁgzgggﬁngg fzeer_vers or to redistribute to lists, requires prior specific netic information involved in a genomic computation, through dis-
CCS'09,November 9-13, 2009, Chicago, lllinois, USA. tributing the computation between the DP and the DC: the DP un-

Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

dertakes a small portion of the computation related to sensitive used in bioinformatics.

data while the DC works on the rest of a genome sequence in- eSource-to-source transformation todVe design a new tool that
volving only nonsensitive nucleotides. As a result, the computa- automatically analyzes a legacy genomic program and instrument
tion can be accomplished without revealing sensitive nucleotides to it with the code to perform specialization.

the DC. Partitioning a computation for privacy protection has been elmplementation and evaluation®ur evaluations show that our
studied in prior research [18, 16]. For example, Swift [18] uses techniques enable many important genome algorithms [64, 56, 54,
information-flow analysis to separate an application into the parts 6] to work on a large amount of data at small overheads. We imple-
that work on the data with different security levels. However, such mented a prototype of our tool and successfully applied it to trans-
an approach can be less applicable to genome algorithms that interform three biocomputing libraries. We also studied use of SMC
twine the operations on both public and sensitive data. A prominent protocols over query programs, and observed a significant improve-
example is a category of dynamic programming algorithms (DPA) ment in performance compared with a direct application of them to
common in the aforementioned research: once a DPA encountersunspecialized algorithms.

a sensitive nucleotide, all the follow-up computation will all be re- Our technique is based upon partition of a computation task ac-

lated to it. As a result, an information-flow analysis will tell us to cording to the sensitivity of its nucleotide inputs. We are fully

put the whole computation on the DP side. aware that identifying sensitive SNPs is still an ongoing research [33].
In this paper, we propose a hew technique that appliegram However, prior research does indicate that such SNPs take only

specializatior{35] to partition a genomic computation accordingto a very small portion of human genome [27], and many important
the sensitivity levels of the genome data it works on. Our approach genome studies [6, 7, 38, 58, 9, 63, 45, 61, 67, 32, 17] work on con-
allows the DC to compute over the genome sequences sanitized bytiguous genome sequences that involve only small amount of SNPs.
the DP, on which sensitive nucleotides are replaced with symbols. The classification of sensitive/nonsensitive nucleotides only serves
This is achieved through mixed executiana concrete execution as an input to our approach.

on public data and a symbolic execution [42] on those symbols. As The rest of the paper is organized as follows. Section 2 and 3
a result, a biocomputing program can be specialized into a “query” describes our query generation techniques and transformation tool.
program for the DP, which takes nothing but sensitive nucleotides Section 4 reports on an evaluation of our approach. Section 5 dis-
as its inputs. Given that sensitive nucleotides only take a very small cusses the limitations of our current design. Section 6 presents the
portion of the data a program processes, its specialized query pro-related prior research, and Section 7 concludes the paper.

gram is typically much more efficient, and can be easily computed

by the DP. An efficient query not only saves the DP’s resources but 2. COMPUTATION PARTITIONING

also significantly reduces the cost for performing an SMC protocol, | thjs section, we present the techniques that partition a genomic
should the DC also have sensitive inputs involved in the computa- computation task according to the sensitivity levels of genome data.
tion. To control information leaks from the outcome of a compu- our approach is based upon program specialization (a.k.a., partial
tation, we treat the program as a database query, and use a quergya|yation), a technique that uses partial inputs of a program to pro-
auditor (Section 2.4) to mediate its answers. To efficiently retrofit q,ce a new program that only accepts the rest of the inputs [35].
legacy biocomputing code with the capability to perform such dis- | our research, we developed the specialization techniques for
tributed computations, we also designed a source-to-source tranSyenome computing, which reduces an algorithm to a query pro-
formation tool that automatically analyzes a legacy program and gram using a sanitized DNA record. As a first step, our current
instruments it for mixed executions. focus is on a set of dynamic programming algorithms [64, 56, 54,
6] that are common in genome computing.

Data Provider ¢ (Data Consumer .
E Sanitized Record B,§ e ing fa.6) 21 OVQI’VIeW])

Sanitizer a § . The general idea of our techniques can be illustrated through a
rﬁ?ff“fﬂ ;‘ﬁ 4 simple example in Figure 2. The example computeseittié dis-
g¢¢ ¢ Queries - tancebetween genome sequeneesndg, i.e., the minimal num-
8 gg N Generator ber of edit operations, including delete, insert and replace, to con-
§ § 3 Ao vert one sequence to the other. This is done through dynamic pro-
888§ b Get Result gramming over a two-dimension mattx(0 - - -n, 0 - - m),

wheren andm are the lengths af andg respectively. Specifically,

the algorithm first initializes the matrix by settidg(z, 0) to ¢ for
0 <i<n,andD(0,j)tojfor0 < j < m. Then, it recursively

Figure 1: Framework. fills the matrix as follows:

We outline the contributions of this paper as follows: D(i,j) =min(D(i — 1,§) + 1, D(3,5 — 1) + 1,

;vﬁrrl)(nf\:)e:cy protection frameworRNe propose a dlstrlbu_ted frame-_ DG —1,j—1)+ (3, 5)) @
privacy-preserving genomic computing, as illustrated in

Figure 1. Our framework distributes a computation task between wheres(s, j) is a score function that has a value 1aifi], the:
the DP and the DC, and lets the DP handle a small portion of the nucleotide onv, is different fromg3|;], thejth nucleotide or, and
task related to its sensitive data. This avoids expensive SMC whena value 0 otherwise. The minimal edit cost between these sequences
the DC does not have sensitive inputs, and significantly reduces theis recorded inD(n, m) and the edit process that incurs that cost is
overheads for running such a protocol when it does. described by a path from the entt, 0) to (n, m).
eComputation partitioning for privacy protectioftVe propose novel Figure 2 presents an example wittFATC and S=ACC The
techniques that use public data to specialize a genomic computingedit distance here i®(3,3) = 1, and the optimal edit path is
program into a much more efficient query program for processing (0,0) — (1,1) — (2,2) — (3,3), as each cell on the chain pro-
sensitive data on the DP. We theoretically analyze the effectivenessvides the smallest edit cost to the next one according to Equation 1.
of these techniques over a category of DPAs that are extensively This algorithm is implemented by a prograRil that iteratively

Input 1

W -

Original Program

Transformed Program

P1 P29 S2@b){
9 Si(ab){ | 10 bool = reduce(a==b);
1 for (i=1;i<=n;i++) { 10 if{a::b) 1 for (i=1;i<=n;i++) { 11 if (bool==true)
2 for (j=lij<=m;j++) { 1 gecturn 0 | 2 for (j=lij<=m;j++) { ER (rl?ogi:false)
3 ins = D[i-1][j]+1; 13 return 1; 3 ins = check(D[i-1][j1+1); 14 return 1;
ers 14} ’ | S 15 residue();

4 del = D[i][j-1]+1; 4 del = check(D[il[j-1]+1); 16 remrns,
5 sub = D[i-1][j-11+S1(a;, 8)); | 5 sub= check(D[i-1][j-11+S2(a;, By); 17 }

— . ; - e) 5 .
6 DIillj] (ins,del,sub); s @b { 6 DIllj] (min3(ins,del,sub)); 19 if (t(.i,:l(nteger)
7 } }g Dimin(a,P)é) | 7} 20 return t;

return min(o,c); 21 i
8 18 } | 8} 22 ¢ iceturn reduce(t);
23}
A + ¢ ¢ Matrix 1 | A —+ ¢ Matrix 2
INREEAE 0 1 2 3

Al Lo 12 |A 1[0 1 2

21 12 |T 2|1 Fa22 52,241

c 32|11 IC 3 | 2 | min(az,2+l.83,2+1) [Paz,2

Figure 2: A simple example.
computes the values of the cells in the matrix. ing program analysis techniques, which is discussed in Section 3.

Suppose thaB[2] is a sensitive nucleotide that is replaced by a

symbol. This prevents’1 from accomplishing the computation, 2.2 Specialization Techniques
because it cannot get the values for the third and fourth columnsin specialize a program, we need to locate its statements that

the matrix. To solve this problem, we transfer the program t0 an- \yor on sensitive nucleotides and transform them into the form
other program/°2, to perform a mixed execution. Specifically, the 1,5 specialization operations can be performed. Those "tainted”

statements at Line 3, 4, 5 and 6 Bt are all modified to work on gtatements are identified by a taint analysis, which we describe in
both concrete and symbol inputs: all the operations go as normal if gection 3. Here we first present our specialization techniques.
the input to a statement contains only concrete values; otherwise, o))
symbolic execution [42] is performed to generate an expression as SPecialization operations. Our approach converts every tainted
its output. Such an expression is furtlieducedthrough, for ex- Statement into a program snippet that checks the input it receives:
ample, combining all the constants. The score funcfarof P1 if the input doe_s not contaln_symbols, @he _or|g|r_1al statement is ex-
is also converted int&2: if a branch condition contains symbols ~ €cuted; otherwise, a symbolic expression is built through symbolic
(Line 15 in.52), S2 exports the branch condition il and both of ext_acutlon [42] and further simplified by a reductl_on_ fur]ctlon befo_re
its branches to eesidualprogram, and returns a symbal;, where being exported as an Qutput. Denote the spguallzatlon operations
i andj are the indices of nucleotide inputs. The same transforma- ©n @ Program® by specialize(F). Such operations happen to fol-
tion happens to thenin operation at Line 6 of1. Its counterpart 10Wing program elements:
statement simplifies the expressions the operation involves through® AssignmentAn assignment = exp is changed ta = reduce(exp)
unfolding symbols into expressions, combining constants and com- if the expressiorzp involves symbols, whereeduce() is a reduc-
paring two expressions using common symbols and value ranges tion function.
In the end, the reduced expressionsli(3, 3) is exported to the e Branching.A branching statementisinthe forif“ exp then
residue program, which serves as the query for the DP. P, else P, where exp is the branch condition, ané and
Matrix 2 shows the process of computing oy&in the presence P’ are the statements to be executed on the two branches. Such
of an unknown nucleotide. ConsideX(3, 3) as an example. Com- a statement is transformed to a set of statements that first checks
puting its value using Equation 1 results in an expression that seeksreduce(exp): if the outcome is either true or false, the program

the minimal one among four expressions:= sz 2, €2 = $2,2+2, proceeds as normal; otherwise, the following statement is exported
es = s32 + 2 andes = s2,2 + 2. This expression is further re- to aresidue programif* reduce(exp) then specialize(P),
duced as follows. We first find that is smaller thare; andey, else specialize(P')". Also exported are the state of the pro-
as all of them describe a sum between, and a constant, and gram prior to the branching, including the values of the variables to
has the smallest constant. Then,is compared withes using the be used inP and P’.

value range of symbols; > andss, 2, which is either 0 or 1, though To evaluatespecialize() on both P and P’ online, we need to
their exact values are unknown. As a result, the query program we set a checkpoint prior to the branching statement and roll back after
generate only contains a very simple expressignalong with the exploring one branch. This can incur significant performance over-

part of the score function for computing ». It is evident that the head. An alternative is to symbolically execute both branches of-
cost for answering such a query on the DP side is far lower than fline to acquire their symbolic expressions, and replace the symbols
running P1. More interestingly, the DC can even figure out the op- in the expressions with concrete values online. Further complicat-
timal edit path without consulting the DP: as we can observe from ing the specialization efforts is the fact that a branch can include

Matrix 2, the value ofD(3, 3) can be traced back tB(2, 2), and other tainted branching statements, which makes the cost of evalu-
again toD(1,1) andD(0, 0) according to Equation 1; this can be ation high. A simple solution can be exporting all statements of a
done without knowing the content Gf2]. branch if it contains other tainted branches.

The above special_ization tec_:hniques are ela_borateq in Section 2.2 | oop. A loop is residualized if its exit condition is symbolic and
Their effect!veness is theoretically analy;ed in Sectlor_l 2.3. The cannot be evaluated after proper reduction. When this happens, we
transformation fromP1 to P2 can be achieved automatically us- can choose to specialize the body of the loop if it does not involve

tainted branches. only containsai, a2, az Or constants: suppose = ai + 5,

e Function.When part of input parameters to a function’s are sym- ¢z = a1 + 6 andes = a1 + 8, such an unfolding gives us =

bols, the function needs to be specialized using the techniques de-min(2a1+5, a1 +a2+5, a1+a3+5), which needs only 3 compar-

scribed above. When this happens, a symbolic expression can beSons to compute. Application of this rule to a dynamic program-

returned. If a function is repeatedly called with different parame- Ming algorithm can reduce it to a much simpler residue program

ters, we can choose to residualize it without specialization. that is also dynamic programming, as elaborated in Section 2.3.

e Tainted address.Programs may read or write a memory loca- 2.3 Analysis

tion whose address depends on the values of sensitive nucleotides. Dynamic programming [14] is an optimization technique widely

For example, the index of an array can be determined by unknown yseq in bioinformatics, particularly for solving fundamental genome

symbols, and & pointer inGprogram can be tainted by sensitive in- computing problems such as sequence alignment, structural align-

puts. When a tainted address is encountered, we can simply exporfnent and RNA secondary structure prediction. These problems

all the §tatements that directly or transitively rely on the address to typically involve two genome sequences] - - -] andg[1 - - - m],

the residue program. _ _ . and are modeled over an+ 1 by m + 1 matrix D. The objective
Another treatment of a tainted address is to explore all possible js 14 find an optimal path fronf0, 0) to (n, m) that maximizes or

values it can take. A nucleotide can only assume four valaes; minimizes the scores accumulated from those incurred by individ-

CandG Therefore, a read from the address involving one symbol o1 moves fron(s, 7) to (i+1,) or (4,5 +1) or (i+1, j+1). Such

gives four possible outcomes at most, which can be represented by, mogeling can also be generalized to a multidimensional graph for

a new symbol. Writing to the address is more complicated, as we i, problem such asiultiple sequence alignmef@6], where the

need to create four threads, each handling one possible version Ofgoal is to find an optimal path in the graph. The DPASs for solving
data. This can be problematic when multiple symbols are present, ihage problems are usually in the following form:

which causes the number of the threads to increase exponentially.

Further study of this problem is left as our future research. D(i,j) = min(D(i — 1, 5) + s1(4,5),
Reduction. Key to specialization is reduction [35] that serves to D(i,j — 1) + s2(4,5),
simplify symbolic expressions. A typical reduction technique is D(i—1,5—1) +s3(i,7),C))

constant folding that combines all the constants in an expression.)]

This is achieved by taking advantage of the properties of a compu- WhereD(z, j) is the score for the optimal path froff, 0) to (4, j),
tation, such as commutativity, associativity and distributivity. For 51(%,7), s2(4,7) andss(i, j) are the functions that compute a score
example,10 + a + 6 can be reduced to + 16. In some cases, an ~ divenali] and[j}, andC' is a constant. This form of optimiza-
expression can be simplified by unfolding a symbol into the expres- tion describes many important bioinformatics algorithms, includ-

sion it represents. As an example, consider an expreasidnt- 10 ing the famous Needleman-Wunsch [56] and the most widely-used

with b = a + 6. Unfolding reduces it t®a + 16. BLAST 2 [66]. Note that throughout this paper we focus on an
A Boolean expression can be evaluated even when it containsimproved version of the DPA first introduced by Gotoh [30], which

symbols. For example, we know that a branch conditiop 10 > reduces the complexity of the DPAs like Needleman-Wunsch and

a6 is true even when the value @fs unknown, as the symbolson ~ Smith-Waterman algorithms fror®(mn?) to O(mn), and thus
both sides of the inequality cancel each other and only the concrete@r® commonly used in today’s genome research.
value4 > 0 is left. This approach can be applied to the compar- Letp be theratio of sensitive nucleotides of, andj[zi=1...,m]
ison between two linear expressions that contain the same set ofbe these nucleotides. The effectiveness of our specialization tech-
symbols and each of them has the same coefficient. More gener-Niques on a DPA is described by Theorem 1.
ally, combining multiple occurrences of the same symbols when
possible can help simplify an expression.

In our research, we design another reduction technique that eval- X,
uates a Boolean expression using the value ranges of the symbols ~-_ %
it contains. Specifically, our approach identifies the maximal and R
minimal values a symbol can take and then propagate this range to a / R e
symbolic expression. Whenever a comparison between two expres- i1
sions happens and the ranges of these expressions do not overlap, @ ; N
its Boolean outcome can be determined. For example, consider ex- ~
pressionexp = a + 9 andexp’ = b + 6. Given the ranges of
a andb are from 0 to 1, we know thaxp is between 9 and 10,
while exp’ falls in the range from 6 to 7. As a result, the Boolean
expressiorexp >exp’ is true. This technique is particularly ef-
fective on dynamic programming based genome computing, which Figure 3: Proof illustration.
we discuss in Section 2.3.

Symbol unfolding. As described above, unfolding a symbol can
help simplify that expression. This, however, does not work al-
ways. Consider the following examplel = min(b + c1,b +
c2,b + c3) with b = min(a1,a2,a3). If b is unfolded in the

ression n mpar | In con- . . .
expression ofl, we need to compare 9 values to gt In co Figure 3 illustrates the general idea of the proof, whose full con-

trast, if we first geb and then computg, only 6 comparisons are tent is presented in a longer version of the paper [68], due to space
needed. In our research, we propose a new reduction rule that un-, P 9 pap ' P

folds a symbol only when an expression does not contain new sym- limit. Informall_y, every unknown nUCIQOt'dg[xt] corresponds to
: one columnz; in the (n 4+ 1) x (m + 1) matrix D. Consider two
bols. In the above example, we can unfélénd ¢; if c;=1.2.3 . . .
= neighboring columns:_: andz:. A path from(0,0) to (¢, z;), a

[Optimal Path —-——-— \

X; == Xpm

THEOREM 1. The queryq(B[z1],- -, Blzom]) generated by
specializing a DPA described in Equation 2 is still a DPA. The com-
putational, spatial and communication complexities for answering
the query are at mosd(pmn?).

cellinz;, must go through one of the ce(l8, z¢—1), - - - , (4, z¢—1)

in z;—1. We call a path fron{0, 0) aconnection patffor (I, z¢—1)

(0 <1 < i) and(i,x:) if the path passes both cells and does
not pass any other cells in column_; or z; between these two
cells. The optimal connection path (the one with the minimal score)
is composed of the optimal path froff, 0) to (I, z¢—1), and the
path segment betwedih, ;1) and (i, z;) with the lowest score.

Its score can be represented as a linear expression with the sym-

bol D(Il, z:—1) and the symbol related te;, and simplified using

by (i,7). The same process happens to the matrix betviegh)
and(%, j) and the one betwe€n, j) and(n, m) to find other mem-
bers on the optimal path, which further divides these matrices into
smaller ones. As such, the algorithm can determine every member
on the path. Since computing a column only needs the information
in the prior column, DCA reduces the spatial complexity of a DPA
to O(m + n), at the cost of doubled computation overheads.

The DCA needs to run a DPA over the whole matrix once, which
makes the complexities of the query generated from specialization

the fact that all nucleotides between the two columns are known. stay atO(pmn?). Apparently, this suggests that the query program
Particularly, an expression that compares the scores of two differ- loses the edge in space efficiency. Again, such a theoretic result is
ent connection paths can often be reduced: for example, we knowdeceiving: the query built upon real data is actually much more

that a path with a scor®(l, z:—1) + C1 + s1(, z¢) is better than
the one withD(l, z,—1) + C2 + s1(4, z¢) if the constantC; is
smaller thanC;. The optimal path tqi, x+) is either one of the
i+ 1 optimal connection paths fro(0, z:—1),- - - , (i, z:—1) or the
path passindgi: — 1, z:). Seeking the optimal path froif®, 0) to

(n, m), we need to first find values for column,,., which depends
on columnz,,—1 and so on. This forms a DPA (See Equation 3
in [68]). ComputingD (i, z+) requires comparing the scoresief2
paths ¢ + 1 optimal connection paths and an additional path from
(i — 1,z¢)). Therefore, the complexity for computing unknown
columnz, is O(n?). Since there are totallym unknown columns,
the complexity for answering the query beconiggmn?).

Discussion.The complexities of an unspecialized DPAGgmn)

for both computation and space. More often than not, the optimal
path with at leasin elements needs to be delivered from the DP
to the DC if the whole computation task is delegated to the DP. On
the other hand, most genome computing tasks involve a short
on the order ofl0?, and a long3, from 10° (a chromosome) to

10° (the whole genome sequence of a human). Therefore, given
p < 107, the query program generated by our approach can be
hundreds of times more efficient than the original program in terms
of computation and space. Our approach incurs extra communica-
tion overheads: the complexity of the communication from the DC
to the DP can b&(pmn?). This weakness, however, is compen-
sated by the efficiency of the communication from the DP to the
DC, which is onlyO(pm). This is because to empower the DC to
figure out the whole optimal path, the DP only needs to disclose
the intersections between the optimal path and unknown columns
Z1,- - ,Zem, and for every intersectiofi, z.), the one of the + 2
paths that contributes to the value of the cell.

Actually, the theoretic result turns out to be too pessimistic, be-
cause our analysis does not consider the reduction achievable usin
the value ranges of expressions: due to the scarcity of unknown
nucleotides, the differences between the constants in the expres
sions for two optimal connection paths can easily overwhelm the
deviations caused by an unknown symbol; as a result, optimal con-
nection paths from different cells in,_; can often be compared
and many of them can be removed from the reduced expression o
D(i,). In our experiment, we observed that a query was at least
thousand times more efficient than the original program, in terms
of computation, space and communication (Section 4).

DPA extensions. DPAs used in genome computing can be ex-
tended to improve their performance. Two prominent examples
are Divide-and-Conquer, which is optimized for space efficiency,
and BLAST, which is designed for high performance. The Divide-
and-Conquer algorithm (DCA) [54] first runs a DPA to compute
the first half of matrixD column by column untilj, the column in

the middle of the matrix, and then compute the second half back-
wards from columm to j. As a result, the intersection between the
optimal path and colump is identified. Denote the intersection

f

efficient, as observed in our research.

BLAST is a widely-used algorithm for fast searching. It first
searches for high scoring subsequence matchings between the se-
quencesy and 3 by seekingwords a subsequence typically con-
taining 11 nucleotides, with scores above a threshold. Then, the
algorithm extends these words using a DPA to find a locally opti-
mal alignment. Our specialization techniques generate queries for
extending words, which is much more efficient than running the
whole algorithm on the DP. A problem is that the score of a word
is usually calculated using exact match. When a word matches a
sequence involving sensitive nucleotides, these nucleotides will be
exposed, which could cause a computation to fail. Fortunately, the
number of sensitive nucleotides in a givéris usually very small,
and as a result, the chance that a word in a shartatches a se-
guence involving such nucleotides is very low.

2.4 Query Auditing

Our framework adopted a simple security policy to control infor-
mation leaks from the outcomes of a computation. The policy spec-
ifies athresholdfor a query, the maximal number of SNPs whose
values can be revealed. For each query, the DP first runs a query
auditor to evaluate the amount of information that could be leaked
out by the answer: if it goes above the threshold, the DP refuses to
respond; otherwise, the query is allowed to be answered. The query
auditor can be as simple as a constraint solver: given a query and
its answer as a constraint, it attempts to determine whether the con-
straint can only be satisfied when some SNPs take unique values;
when this happens, these SNPs are deemed disclosed if the answer
is given to the DC. For example, consider a querfor an edit
distance, whose answer is 5; if the auditor finds that to satisfy the
constraint ¢ = 5”, a SNP must beA, it concludes that the SNP
will be disclosed by the answer. In Section 4, we demonstrate that

Shis simple technique actually worked on realistic computations.

The action of denying a query itself can leak information: at the
very least, an attacker knows that the answer to her query can be
used to determine at leasSNPs, wheré is the threshold. How-
ever, by setting the threshold well below the number of SNPs in-
volved, we can make it difficult for the attacker to find out exactly
which ¢ SNPs can be determined. In general, however, we do not
want to claim that this approach is a perfect solution. Instead, it is
just a component of our framework and can be replaced with other
existing technologies for query auditing [55, 40] and inference con-
trol [40, 55, 50, 51, 31, 24]. Study of these technologies’ efficacy
under our framework is left as future research.

2.5 Secure Multi-party Computation

The DC's sequence may contain sensitive nucleotides that can-
not be revealed to the DP. When this happens, a query needs to be
answered without leaking out sensitive inputs from betand 3,
which can be achieved using secure multi-party computation [69,
29]. Direct application of SMC omv and 3, however, can intro-
duce huge performance overheads, making the approach hard to

scale [34]. Our solution is to use nonsensitive data on bathdg
to specialize a computation, reducing its complexity. Specifically,
let the set of sensitive nucleotides arbe {«[y-|}, and the set for

statements. These sets include only the taint sources at the begin-
ning of an analysis. During the analysis, our analyzer checks every
element on the AST according to the execution flow of the program,

B be{8[z:]}. These nucleotides are all marked as symbols on the identify tainted variables and the statements that operate on these
sequences. Performing a mixed execution on them, the DC can ac-variables using propagation rules, and put thefi tand S respec-

quire a query; with {a[y-]} and{3[z:]} as inputs. Such aquery is
typically much more efficient than the original program, as demon-

tively. Some statements need special treatment. Specifically, our
analyzer forks threads to explore different branches of a branching

strated in our experimental studies (Section 4). To seek the answerstatement to the point where they converge. For a loop statement,

for ¢, the DC converts it into a circu® and further encrypts it to
create a “garbled circuitt)’. OverQ’, the DC and the DP can run

we need to consider the propagation of taint across different iter-
ations. Consider the example in Figure 2 from Line 15 to 18 of

an SMC to compute the answer to the query. Compared with the P1, in whichmin(a, b, ¢) is computed by first comparing andb

prior work [34], our approach is much more efficient, @5 can

to find the smaller one and then comparing it withiThese opera-

be very small, and therefore can handle a computation task with ations are embedded in the loop from Line 2 and 7. An interesting
much larger scale (on the order of tens of thousands of nucleotides).observation is that i is tainted, the first iteration of the loop only

A problem here is that SMC does not offer protection to the in-
formation revealed by the outcome of a computation. A solution
can be to let the DP evaluate the unencrypted cit@uitithout ac-
cess to{afy-|} before SMC happens. This is feasible because
is usually very short, involving only a few hundreds of nucleotides,
and as a result, typically no more than 5 of them are SNP [43].
Therefore, the DP can check afl possible combinations of these
nucleotides to ensure that none of them will cause the answer for
to violate privacy policies, for example, exposing more nucleotides

taints the statement at Line 17 and arfayHowever, the next iter-

ation sees the statement at Line 16 also become tainted because this
time, D is tainted. Our solution to the problem is to statically an-
alyze the loop iteration by iteration, until no new tainted variables

or statements are discovered.

Another important issue we had to deal with is propagation of
taint throughcontrol flow This happens when a branch condition
becomes tainted. As a result, sensitive inputs could affect the use
of the statements and variables within $wpe[5] of the branch-

than permitted by a threshold. In the case that the siZexfj-|} ing, that is, part of the program between the condition and the pro-
is large, a solution could be randomly sampling some of combina- gram location where all branches converge. For example, the score
tions for policy verification. Note that we can hide the outcome of function S1 in Figure 2 contains a branch that a comparison be-
such a computation from the DP, which eliminates the concern of tween two nucleotides, one of which can be sensitive, determines
leaking the DC's data to the DP through the outcomes. The effec- the score it returns. In this case, we taint all the variables within the
tiveness of such an approach, however, needs to be further studiedscope of the branching to be used posterior to the statement. For
in the future research. the example in Figure 2, the output 81 is tainted.

3.2 Code Instrumentation
3. PROGRAM TRANSFORMATION

This section describes a tool for transforming legacy biocom- ?"gim.wde
puting code into a new program to perform mixed executions on 2 1=5;

sanitized genome sequences. Our current design is for converting
Java programs, but the idea behind it can work on the programs in
other languages. We also implemented a prototype using Java.

Transformed code snippet
1 IntSymbol I=new IntSymbol();

2 l.assign(5);
To transform a Java program, our tool takes the following steps. 3 class IntSymbol {
It first runs a transformation tool such as Java2XML [3] to convert g Opj:ct v_alu?_;) (value o s)
H - void assign(int 1) { value = I;
the source code into ambstract syntax tre¢AST) that descrlbes 6 void assign(exp) { value = reduce(e); }
the structure of the program [12]. The AST representation clearly 71

indicates different elements of the program, including variables and
statements, and their relations, in particular execution flows, over .))
which ataint analysisis performed to find out all the elements Figure 4: Integer variable transformation.
tainted by sensitive nucleotides. These elements are further in- Tainted program elements need to be transformed to enable a
strumented with specialization code to support mixed executions. mixed execution. This was achieved in our research through replac-
Finally, the transformed AST is converted into a new Java program ing a tainted variable with a class that accepts both concrete val-
through XSLT stylesheet [12]. ues and a symbolic expression, and transforming tainted statements
. . into the forms that can work on these variables. Figure 4 presents
3.1 Taint Ana|y5|3 an example, in which an integer varialilés converted into a new
The objective of taint analysis is to identify all statements and type IntSymbol , a class accepting both concrete and symbolic
variables affected by sensitive nucleotides. The statements in a pro-values. To perform an operation on such a variable, proper instru-
gram that import these data are manually annotated as taint sourcesnentation needs to be done to operators, such as assignment and
Starting from them, our approach statically analyzes the propaga-addition. In Figure 4, an assignment of a valueltes modified
tion of tainted data on the AST in accordance with a set of propaga- to be performed byssign() ,the method ointSymbol : the
tion rules. Such arule is in the form (,i,0,e) , inwhichs is method does the normal assignment when its input is concrete, and
a statemeni, ando represent the input and the output of the state- maintains and reduces an expression when the input is symbolic.
ment respectively, and is a Boolean value that indicates whether A tainted statement is replaced with a code snippet according
execution of the statement will cause taint to be propagatedifrom to its type, as described in Section 2.2. A problem is that a pro-
to 0. For instance, the rule=, value, variable, true) gram could call a function from other libraries whose source code
specifies that an assignment statement’)(will propagate taint may not be available. This is tackled by our instrumentation tool
from its input {alue) to its output yariable). through redirecting such a call to a wrapper of the function being
Let V be the set of tainted variables afdbe the set of tainted called. The wrapper checks the parameters of the call: if any of

them is symbolic, it returns a new symbol to enable the follow-up communicational overheads incurred by the interactions between
operations and residualizes the call; otherwise, it passes the paramthe DP and the DC.

eters to the callee. Table 2 illustrates the experimental results, in which the problem
sizes are described &s, m), wheren andm represent the sizes of
4. EVALUATION « (the DC's sequence) antl(the DP’s sequence) respectively. Our

This section reports an empirical study of the techniques we pro- €xperiments include an edit distance (row 1), 2 global alignments
pose. The genome sequences used in our study came from the hugrow 2 and 3), 4 local alignments (row 4 to 7), longest common
man genome dataset in UCSC Genome Browser [39], the latestsequence (LCS) identification (row 8) and 1 multiple alignment.
Build 36.1 assembled on March 2006. We extracted segments fromThe multiple alignment algorithm computes over three sequences.
the dataset and truncated them into sequences of different sizesThe last one belongs to the DP and contains one SNP. The problem
for our experiments. These sequences were sanitized by replacingsizes we chose ranged from hundreds of nucleotides to a million
their SNP nucleotides, as indicated by the International HapMap of nucleotides. The number of sensitive nucleotides3ovaried
Project [27], with symbols. according to the problem sizes, from a single one to 1056. In the

. table, the baseline results are labeled as “Native”.
4.1 Program Transformation The table shows that the mixed execution did take a noticeable

We ran our program-transformation prototype on 7 Java-based to|| on the DC’s performance. Compared with the baseline, trans-
DPA implementations, inClUding 3 bioinformatics libraries and 4 formed programs were typ|ca||y one order of magnitude slower and
synthesized programs, as illustrated in Table 1. Our prototype trans-consumed more memory. Such a raise of overheads culminated in
formed all synthesized programs and most part of the libraries. The the experiment involving the Needleman-Wunsch algorithm from
new programs and the queries they generated were evaluated usinghe NeoBio library, which brought in a slow down factor of 64
genome data, and their outcomes were found to be identical with 3nd used 28 times more memory. However, the DC’s cost seems
those produced by running the original programs on unprotected to be compensated by the huge performance gain on the DP side:
sequences. This indicates that the transformation was sound. Folthe query programs generated by the DC were so efficient that they
lowing we describe our experiences with the Java libraries. were at least 10000 times faster than the baseline and typically con-

NeoBio [22] is a Java library including three pair-wise alignment suymed much less memory. Actually, computing the answer for a
algorithms, Needleman-Wunsch [56], Smith-Waterman [64], and query never took more than 100 microseconds. Particularly, the
Crochemore-Landau-Ziv-Ukelson [21]. Our tool failed to trans- transformed Divide-and-Conquer algorithm (row 8) even enabled
form the last one because it intensively uses tainted addresses: ithe DC to accomplish the computation without querying the DP at
performs computation upon a double-linked list constructed based a||. This is because in that experiment, the constant in Equation 2
on the values of individual nucleotides. As a result, our analyzer was found to be below the value ranges of all symbolic expressions,
found that nearly all the statements of the algorithm had to be resid- and as a resu|t’ a concrete outcome ensued. Note this would not
ualized. This problem comes from the limit support our current de- pe possible without specialization. Moreover, the communication
Sign offers for SymbOliC addresses, which will be addressed in our overheads were also found to be very low. This is in a stark con-
follow-up research. trast with the conservative estimate made in our theoretic analysis

Argo genome browser [1] includes 48 class files to support both (Section 2.3), which predicts much higher overheads.
global and local alignment algorithms. Most of the classes, how- .
4.3 Information Leaks

ever, are different designs of score functions, which can be residual-
ized without incurring noticeable performance overheadsto aquery We also evaluated the information leaks that can be caused by
program. The library was successfully converted by our prototype releasing the outcomes of query programs, using a query auditor
and evaluated in our experiments. The same success also happendaliilt upon a constraint solver [25]. The outcomes are shown in Ta-
to JAligner [2], a Java implementation of the Smith-Waterman al- ble 3. This study was conducted under three scenarios: an answer
gorithm with Gotoh'’s improvement. An interesting property of this includes only a value (e.g., an edit distance), a path for optimal
algorithm is that it maintains @+1) x (m+-1) matrix to record the alignment or both. From the table, we can see that the amount of
neighbor of each cell that contributes to its value. This simplifies information disclosed by answers is pretty low: ranging from 0% to
the “backtracking” process for identifying the optimal path. During 1.8%. The performance of constraint solving was also reasonable:
the program’s runtime, our specialization code assigned symbols tofrom 0.001 to 0.3 seconds.

cells after unknown nucleotides were encountered. The concrete i i
values of these cells were calculated from the DP’s answer to the4'4 Se_cure Multi parf[y _Compu_tatlon .
We studied how our specialization techniques could facilitate se-

query exported by the program, which included the intersections - !)
between the optimal path and unknown columns, and the symbolic €Uré multi-party computation when the DC's sequeaaso con-
tains sensitive nucleotides. In our experiment, we ran the trans-

expressions contributing to the values of these intersections. THVE o
formed edit-distance program on the sanitized sequeneasl 3,

4.2 Performance whose SNP nucleotides were replaced by symbols. This produced a

We ran the transformed programs on real genome sequences taguery program, which was converted into a “garbled circuit” using
study their performance. Our experiments were conducted on two a tool we developed. After that, the DP and the DC ran an SMC
laptops, each with a 1.8G Intel Core 2 Duo CPU and 2 GB memory. protocol [34] to evaluate the circuit. In the experiment, we mea-
One of these laptops was used as the DP, and the other as DCsured the accumulated computation time and memory use on the
They communicated with each other through a local network. In DC side, including those for program specialization and running
the experiments, we measured the computation time and memorythe SMC protocol, as well as the overheads on the DP side for per-
use for both mixed executions on sanitized data that happened onforming its part of the protocol. These results were compared with
the DC side, and executions of the queries generated thereby on theéhe overheads of running an optimized SMC protocol [34] directly
DP side. Such information was compared with the computational on« andg. The optimized SMC protocol we used is an implemen-
and spatial overheads for directly running the original programs on tation of Protocol 3 proposed in the prior work [34]. The protocol
unprotected data, which served as baselines. We also recorded thés recommended for computing large-size problems, as it strikes a

Table 1: Transformed programs.

Program Name Source # of Class Files Included Algorithms |
NeoBio library 22 Needleman-Wunsch, Smith-Waterman, Crochemore-Landau-Ziv-Uke|lson
Argo genome browse| library 48 Global Alignment, Local Alignment
JAligner library 16 Smith-Waterman algorithm with Gotoh’s improvement
Edit Distance synthesized 1 Edit Distance
Blast synthesized 2 Blast
Divide-and-Conquer || synthesized 2 Divide-and-Conquer
Multiple Alignment synthesized 1 Multiple Alignment

Table 2: Performance.

Algorithm Problem Size | SNP - Native - DC - oP Bandwidth
Time(s) | Mem(MB) Time Mem Time Mem (KB)
Edit Distance 400x 400 2 0.523 3.665 28.526 46.915 | 0.000033| 1.536 1.841
NeoBio Needleman 400%x 400 2 0.665 2.052 42.465 56.897 | 0.000078| 2.740 2.760
Argo Global Alignment 400x 400 2 0.801 3.432 46.151 44.736 | 0.000054 | 2.740 2.535
NeoBio Waterman 200x 100000 55 95.664 87.830 1009.029 | 626.167 | 0.000014 | 2.740 1.968
Blast 200x 100000 55 2.416 18.624 64.286 49.893 | 0.000019 | 2.740 2.017

Argo Local Alignment 200x 100000 55 109.132 133.521 1512.368 | 661.880 | 0.000017| 2.740 1.996
JAligner Waterman 200x 100000 55 27.056 124.215 1637.066 | 604.712 | 0.000016 | 2.740 1.968
Divide-and-Conquer 200x 1000000 | 1056 | 646.909 34.738 6857.100 | 168.808 0 0 0
Multiple Alignment 100x100x 100 1 6.545 6.606 394.865 | 113.188 | 0.000021 | 2.052 2.038

balance between computation time and memory use [34]. We alsople, some data structures such as suffix trees [48] can be hard to
recorded the bandwidth consumptions for both our approach andspecialize because to correctly build these structures, the DC may

the prior approach. The results are presented in Table 4. have to know the exact values of every genome strings, including
As illustrated by Table 4, the optimized SMC protocol took more those carrying sensitive information.
than an hour and 2.56GB bandwidth to deal witR(® x 1000 Our program-transformation tool is designed for Java. Actually,

problem. This is actually not necessary, as real genome sequence€ is more pervasive in genomic computation, due to its high perfor-
of such sizes typically contain very few sensitive nucleotides. In mance. Given its complicated structure, in particular, extensive use
contrast, our approach first specialized the computation to a muchof pointers,C programs can be more difficult to transform. Prior
smaller problem and then performed SMC on it. Though the SMC research [8] studies specialization of pari@fwhich we can take
protocol we used was not optimal, we achieved a significantly bet- advantage of. Such work, however, is more about partial evaluation
ter performance: a litle more than 106 seconds in computation at compiling time than offline transformation for run-time special-
time and merely 5.2 KB in bandwidth usage. When the problem ization of existing code, which is our focus.

size grew ta300 x 10000, direct application of SMC to the whole

sequences could not finish the computation in 3 hours, while our §. RELATED WORK

approach accomplished the task within 411 seconds with 13.9KB

X . . Privacy preserving computations over genome data have been
bandwidth consumption. This result demonstrates that our approach died V. M . h based hi
can offer more practical privacy protection for genome computing Studied recently. Most prior approaches are based on cryptographic

" protocols [10, 34, 15]. A prominent example is the recent work

that optimizes SMC techniques for computing DPA-based bioin-

5. DISCUSSION formatics algorithms [34]. This approach significantly improves

Beside the threshold policy, our framework is open to other pri- the efficiency of SMC and is demonstrated to be very effective on
vacy policies [46, 44, 33] for regulating information leaks from small-scale computing tasks, such as global alignment involving
outcomes of a computation. We feel that there is reason to expecthundreds of nucleotides. However, it is unable to deal with a large-
these policies and their enforcement, which have been extensivelyscale computation, as demonstrated in Section 4. Another approach
studied in database security, to be successfully combined into ouris distributed Smith-Waterman algorithm [65] that decomposes a
approach, as the interactions between the DP and the DC does notomputation problem into small sub-problems and allocates them
have any substantial difference from those between clients and ato multiple problem solvers. This technique, however, leaks more
database. However, it remains to be seen how effectively and effi- information than what is revealed by the outcome of a computa-
ciently these techniques work under our framework, which is left tion, and offers little privacy guarantee. In contrast, our approach
as future research. takes advantage of the fact that a genome sequence is actually a

Though DPAs are among the most important building blocks for mixture of public and sensitive data, and only a very small portion
computational genomics, there are many other algorithms that needof it needs protection. As a result, we can simplify a computation
to be further studied. For decades, program specialization has beerto the extent that millions of nucleotides can be easily handled and
proven to be valuable to the research on a wide variety of areas,information leaks can be effectively assessed.
including compiler generation [36], computer graphics [49] and Information flow security was proposed decades ago [23, 13]
others. We expect the same success in applying the techniques t@nd its application to programming languages like Java has also
genomic computations. On the other hand, it is also important to been studied for many years. A prominent example is Jif [52, 53],
understand the limitations of specialization techniques. For exam- a security-typed programming language that supports information-

Table 3: Information Leakage.

Algorithm Problem Size | SNP value - path - Value and Pa,th
Leakage(%) | Time(s) | Leakage(%) | Time(s) | Leakage(%) | Time(s)
Edit Distance 400x 400 2 0 0.053 0 0.063 0 0.070
NeoBio Needleman 400x 400 2 0 0.274 0 0.209 0 0.304
Argo Global Alignment 400x 400 2 0 0.249 0 0.196 0 0.291
NeoBio Waterman 200x 100000 55 1.8 0.010 1.8 0.010 1.8 0.005
Blast 200x 100000 55 1.8 0.007 1.8 0.003 1.8 0.011
Argo Local Alignment 200x 100000 55 1.8 0.003 1.8 0.005 1.8 0.001
JAligner Waterman 200x 100000 55 1.8 0.008 1.8 0.008 1.8 0.004
Divide-and-Conquer 200x 1000000 | 1056 0 0 0 0 0 0
Table 4: Facilitation of secure multi-party computation.
SNP Optimized SMC [34] Our Approach
Problem Size DP | DC Time Mem Bandwidth - opP - DC Bandwidth
Time Mem Time Mem
200 x 1000 3 1 1h5min | 5.95MB 2.56GB 392.5ms | 5.12MB | 106.2s| 62.3MB 5.2KB
300 x 10000 >3h n/a n/a 537ms | 5.12MB | 410.5s | 223.2MB 13.9KB

flow (IF) control within Java. Jif is designed for enforcing different

its capability to handle the computation tasks with practical scales.

IF policies in a program, which is more than we need. Therefore, We developed a program transformation tool to automatically con-
we did not build our prototype over it, and instead, implemented vert existing bioinformatics programs to the forms capable of per-

our own lightweight tool for taint analysis. Based on Jif, Swift [18]

forming privacy-preserving operations. We also studied how our

uses IF analysis to separate an application according to securitytechniques can facilitate SMC on genome computing problems.

policies. This is insufficient for our purpose, because for the bio-
computing algorithms like DPA, the part of the computation onthe g,
sensitive data can be intertwined with that on the public data. For
example, a static IF analysis on a DPA could taint all the statements
once the program receives a single sensitive nucleotide. As a result
the whole program has to be placed on the DP side, which is exactly
what we intend to avoid.

Program specialization and partial evaluation have been studied
for decades [35, 19, 20, 62, 60, 28], and are extensively used in9-
compiler generation, real-time systems and many other areas [36,
57, 19, 20, 37, 41, 49, 11]. To our knowledge, our approach is the [2]
first attempt to apply program specialization to privacy-preserving
genomic computations. For this purpose, we propose new special- [2!
ization techniques tuned to the properties of genome data, includ- n
ing the rules for reducing Boolean expressions with value ranges [g
and determining when to unfold a symbol. We prove the effective-
ness of these techniques on a category of DPAs that are common [6]
in genome computing. Moreover, different from existing partial 7
evaluators [35] that work at the compiling stage, our approach spe-
cializes an algorithm at runtime. This aligns our approach with
the techniques for dynamic code generation [59]. However, unlike [8]
these techniques, we do not rely on a language to define the way
to generate new programs, and instead, use program analysis tog

retrofit legacy programs for specialization operations.
[10]

7. CONCLUSION

This paper presents an innovation that makes an important step[ll]
toward practical privacy-preserving genomic computations. Our
approach is based upon the fact that only a very small portion of
human genome contains sensitive information. Therefore, a datal?]
provider can announce sanitized genome sequences to enable com-
putations on pubic data, and answers the queries about sensitive
data when its privacy policy permits. These queries are generated
in our research through program specialization. We theoretically [*°]
analyzed the effectiveness of our approach on a set of DPAs com-
mon in computational genomics, and experimentally demonstrated[14]

] Genetic variation progranttp://www.genome.gov/10001551

ACKNOWLEDGEMENTS

We thank Louis Kruger, Somesh Jha, and Vitaly Shmatikov for
sharing with us the code for optimized SMC [34]. This work was
'supported in part by the National Science Foundation the Cyber
Trust program under Grant N&NS-0716292 .

REFERENCES

] Argo genome browser.

http://www.genome.wi.mit.edu/annotation/argo/ .

Jaligner: java implementation of the smith-waterman algorithm for biological
sequence alignemertittp://jaligner.sourceforge.net/ .

Java2xml : A java to xml converter.

https://java2xml.dev.java.net/ .

,2008.

F. E. Allen. Control flow analysis. IRroceedings of a symposium on Compiler
optimization pages 1-19, 1970.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Mol Biol, 215(3):403-410, 1990.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped blast and psi-blast: a new generation of protein database
search program&lucleic Acids Re25(17):3389-3402, Sep 1997.

L. O. Andersen. Program analysis and specialization for the ¢ programming
language. Phd thesis, Department of Computer Science, University of
Copenhagen, May 1994,

S. Artzi, A. Kiezun, and N. Shomron. miRNAminer: a tool for homologous
microRNA gene searctBMC Bioinformatics9:39, 2008.

M. J. Atallah, F. Kerschbaum, and W. Du. Secure and private sequence
comparisons. IWPES '03: Proceedings of the 2003 ACM workshop on
Privacy in the electronic societpages 39—44, New York, NY, USA, 2003.
ACM.

W.-Y. Au, D. Weise, and S. Seligman. Generating compiled simulations using
partial evaluation. IDAC '93: Proceedings of the 28th Design Automation
Conferencepages 205-210, New York, NY, USA, 1991. |IEEE.

G. J. Badros. Javaml: a markup language for java source co@eoteedings

of the 9th international World Wide Web conference on Computer networks :
the international journal of computer and telecommunications netowrking
pages 159-177, Amsterdam, The Netherlands, The Netherlands, 2000.
North-Holland Publishing Co.

D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical
foundations. Technical Report ESD-TR-73-278, Hanscom AFB, Bed-ford,
Mass., November 1973.

R. Bellman. Dynamic programmin&cience153(3731):34 — 37, 1966.

[15]

[16]

[17]

[18]

[29]

[20]

[21]

[22]
[23]
[24]
[25]
[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

F. Bruekers, S. Katzenbeisser, K. Kursawe, and P. Tuyls. Privacy-preserving
matching of dna profiles. Technical Report Report 2008/203, ACR Cryptology
ePrint Archive, 2008.

D. Brumley and D. Song. Privtrans: Automatically partitioning programs for
privilege separation. IRroceedings of the 13th USENIX Security Symposium
August 2004.

N. E. Castellana, S. H. Payne, Z. Shen, M. Stanke, V. Bafna, and S. P. Briggs.
Discovery and revision of Arabidopsis genes by proteogenorice. Natl.

Acad. Sci. U.S.A105:21034-21038, Dec 2008.

S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng.
Secure web application via automatic partitioningSIBSP '07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems pringiglges
31-44, New York, NY, USA, 2007. ACM.

C. Consel and O. Danvy. Tutorial notes on partial evaluatio®@L '93:
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languagepages 493-501, New York, NY, USA, 1993. ACM.

C. Consel and S. C. Khoo. Semantics-directed generation of a prolog compiler.
Sci. Comput. Program21(3):263-291, 1993.

M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence
alignment algorithm for unrestricted cost matrices18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA,22)02.

S. A. de Carvalho Junior. Neobio - bioinformatics algorithms in java.
http://neobio.sourceforge.net/ .

D. E. Denning. A lattice model of secure information fl@ommun. ACM
19(5):236-243, 1976.

J. Domingo-Ferrer, editomference control in statistical databases: From
theory to practiceSpringer, 2002.

B. Dutertre and L. Moura. The YICES SMT Solver.

http:/lyices.csl.sri.com/ , as of 2008.

R. C. Edgar and S. Batzoglou. Multiple sequence alignn@atrent Opinion

in Structural Biology 16(3):368-373, 2006.

R. Gibbs. The international hapmap projédature (London)426:789, 2003.

R. Gluck and J. Jorgensen. Efficient multi-level generating extensions for
program specialization. IRLILPS '95: Proceedings of the 7th International
Symposium on Programming Languages: Implementations, Logics and
Programs pages 259-278, London, UK, 1995. Springer-Verlag.

O. Goldreich, S.Micali, and A.Wigderson. How to play any mental game. In
STOC 1987.

O. Gotoh. An improved algorithm for matching biological sequendédol

Biol, 162(3):705-708, December 1982.

V. Goyal, S. K. Gupta, and A. Gupta. A unified audit expression model for
auditing sql queries. IRroceeedings of the 22nd annual IFIP WG 11.3 working
conference on Data and Applications Securigges 33-47, Berlin,

Heidelberg, 2008. Springer-Verlag.

N. Gupta, S. Tanner, N. Jaitly, J. N. Adkins, M. Lipton, R. Edwards,

M. Romine, A. Osterman, V. Bafna, R. D. Smith, and P. A. Pevzner. Whole
proteome analysis of post-translational modifications: applications of
mass-spectrometry for proteogenomic annotati@enome Resl7:1362-1377,
Sep 2007.

J. N. Hirschhorn and M. J. Daly. Genome-wide association studies for common
diseases and complex trailéature Reviews Genetic8(2):95-108, February
2005.

S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic
computation. IR008 IEEE Symposium on Security and Prive208.

N. Jones, C. Gomard, and P. SestBértial Evaluation and Automatic Program
Generation, C.A.R. Hoare SerieRrentice-Hall, 1993.

N. D. Jones, P. Sestoft, and H. Sondergaard. An experiment in partial
evaluation: the generation of a compiler generatoProc. of the first
international conference on Rewriting techniques and applicatipages
124-140, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

J. Jorgensen. Generating a compiler for a lazy language by partial evaluation. In
POPL '92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on
Principles of programming languagesages 258-268, New York, NY, USA,
1992. ACM.

O. Keller, F. Odronitz, M. Stanke, M. Kollmar, and S. Waack. Scipio: using
protein sequences to determine the precise exon/intron structures of genes and
their orthologs in closely related speci8C Bioinformatics9:278, 2008.

W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M.
Zahler, and D. Haussler. The human genome browser at GENOME
RESEARCH25(6):996-1006, 2002.

K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditingP@®DS '05:
Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systerpages 118-127, New York, NY, USA, 2005.
ACM.

S. C. Khoo and R. S. Sundaresh. Compiling inheritance using partial evaluation.
In PEPM '91: Proceedings of the 1991 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulai@ages 211-222, New
York, NY, USA, 1991. ACM.

J. C. King. Symbolic execution and program testi@gmmun. ACM

[43]
[44]
[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

(53]
[54]

[58]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

19(7):385-394, 1976.

L. Kruglyak and D. Nickerson. Variation is the spice of liféat. Genet.
27:234-236, Mar 2001.

N. Liand T. Li. t-closeness: Privacy beyond k-anonymity aﬁ;;édiversity. In

In Proceedings of IEEE International Conference on Data Enginee@007.

B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology
searchBioinformatics 18(3):440-445, Mar 2002.

A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam.
L-diversity: Privacy beyond k-anonymitpCM Trans. Knowl. Discov. Data
1(1):3, 2007.

B. Malin. Protecting dna sequence anonymity with generalization lattices.
Technical Report CMU-ISRI-04-134, Carnegie Mellon University, As of
October 2007.

E. M. McCreight. A space-economical suffix tree construction algorithm.
ACM, 23(2):262-272, 1976.

T. Mogensen. The appliation of partial evaluation to ray-tracing. Master thesis,
DIKU, University of Copenhagen, 1986.

R. Motwani, S. Nabar, and D. Thomas. Auditing a batch of sql queiata
Engineering Workshop, 2007. IEEE 23th International Conferencpages
186-191, April 2007.

R. Motwani, S. Nabar, and D. Thomas. Auditing sql queri2ata Engineering,
2008. ICDE 2008. IEEE 24th International Conference pages 287-296,

April 2008.

A. C. Myers. Jflow: Practical mostly-static information flow controllhnProc.
26th ACM Symp. on Principles of Programming Languages (P@BRges
228-241, 1999.

A. C. Myers and B. Liskov. Protecting privacy using the decentralized label
model. ACM Trans. Softw. Eng. Methodo®(4):410-442, 2000.

E. W. Myers and W. Miller. Optimal alignments in linear spaCABIOS
4:11-17,1988.

S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani. Towards
robustness in query auditing. VLDB '06: Proceedings of the 32nd
international conference on Very large data bagesges 151-162. VLDB
Endowment, 2006.

W. C. Needleman SB. A general method applicable to the search for similarities
in the amino acid sequence of two proteididdol Biol, 48(3):443-453, 1970.

V. Nirkhe and W. Pugh. Partial evaluation of high-level imperative
programming languages with applications in hard real-time systenfRORL

'92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles
of programming languagepages 269-280, New York, NY, USA, 1992. ACM.
G. Pavesi, F. Zambelli, C. Caggese, and G. Pesole. Exalign: a new method for
comparative analysis of exon-intron gene structukegleic Acids Res.

36:e47, May 2008.

M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. C and tcc: a
language and compiler for dynamic code generat#h@®M Trans. Program.

Lang. Syst.21(2):324-369, 1999.

T. W. Reps and T. Turnidge. Program specialization via program slicing. In
Selected Papers from the Internaltional Seminar on Partial Evaluapages
409-429, London, UK, 1996. Springer-Verlag.

R. G. Sadygov, D. Cociorva, and J. R. Yates. Large-scale database searching
using tandem mass spectra: looking up the answer in the back of theNaik.
Methods 1:195-202, Dec 2004.

U. P. Schultz, J. L. Lawall, C. Consel, and G. Muller. Towards automatic
specialization of java programs. ECOOP '99: Proceedings of the 13th
European Conference on Object-Oriented Programmpages 367-390,
London, UK, 1999. Springer-Verlag.

S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison,

D. Haussler, and W. Miller. Human-mouse alignments with bla&enome

Res 13(1):103-107, Jan 2003.

W. M. Smith TF. Identification of common molecular subsequent&ol Biol,
147:195, 1981.

E. Szajda, M. Pohl, J. Owen, and B. Lawson. Toward a practical data privacy
scheme for a distributed implementation of the smith-waterman genome
sequence comparison algrotihm.Rroceedings of the 12th Annual Network
and Distributed System Security Symposium (NDSS206p.

T. A. Tatusova and T. L. Madden. Blast 2 sequences - a new tool for comparing
protein and nucleotide sequencEEMS Microbiology Letters174:247-250,
1999.

D. Tsur, S. Tanner, E. Zandi, V. Bafna, and P. A. Pevzner. |dentification of
post-translational modifications by blind search of mass spdd#ta.

Biotechnol, 23:1562-1567, Dec 2005.

R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong.
Privacy-preserving genomic computation through program specialization.
Technical Report [IUCS-TR679, Indiana University, 2009.

A. Yao. How to generate and exchange secrets S 1986.

