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Abstract

An operation preceding most human DNA analyses is
read mapping, which aligns millions of short sequences
(called reads) to a reference genome. This step involves
an enormous amount of computation (evaluating edit dis-
tances for millions upon billions of sequence pairs) and thus
needs to be outsourced to low-cost commercial clouds. This
asks for scalable techniques to protect sensitive DNA in-
formation, a demand that cannot be met by any existing
techniques (e.g., homomorphic encryption, secure multi-
party computation). In this paper, we report a new step
towards secure and scalable read mapping on the hybrid
cloud, which includes both the public commercial cloud and
the private cloud within an organization. Inspired by the
famous “seed-and-extend” method, our approach strategi-
cally splits a mapping task: the public cloud seeks exact
matches between the keyed hash values of short read sub-
strings (called seeds) and those of reference sequences to
roughly position reads on the genome; the private cloud ex-
tends the seeds from these positions to find right alignments.
Our novel seed-combination technique further moves most
workload of this task to the public cloud. The new approach
is found to work effectively against known inference attacks,
and also easily scale to millions of reads.

1 Introduction

The rapid advance of human genomics technologies has
not only revolutionized life science but also profoundly im-
pacted the development of computing technologies. At the
core of this scientific revolution is the emergence of the
high-throughput Next Generation Sequencing (NGS) tech-
nologies: today, a single sequencer can generate millions of
short DNA sequences (called reads) with 35 to 250 base-
pairs (bp) long over one billion nucleotides [40]. To in-
terpret these sequences, the most important step is to align

them to a public human DNA sequence (called reference
genome) to identify their genetic positions and other fea-
tures, e.g., whether they belong to human or human mi-
crobes. This operation, known as read mapping, is a pre-
requisite for most DNA sequence analyses [54] (e.g., SNP
discovery, genotyping, personal genomics, etc. [49]). It
is also a step involving intensive computation, given the
huge size of the reference genome - 6 billion nucleotides,
and the complexity of the mapping operation - calculating
edit distances between reads and all the substrings on the
reference genome. With the fast-growing sequence data
produced by NGS, the demands for mapping such data
are increasingly hard to be met by the computing power
within organizations [52]. A trend widely believed to be
inevitable is outsourcing this computation to low-cost com-
mercial clouds [52]. For example, Amazon Elastic Com-
pute Cloud (EC2) provides different types of computing
instances at a price as low as 0.015 dollar per hour [2].
This development, however, brings in privacy risks: on
the one hand, NGS reads can be used to identify sequence
donors [39], a serious privacy threat that can lead to denying
their access to health/life/disability insurance and educa-
tional/employment opportunities; on the other hand, today’s
cloud providers do not offer high security assurance and
tend to avoid any liability [3]. To protect donors and avoid
legal troubles, the NIH so far disallows any datasets involv-
ing human DNA to be handed over to the public cloud.

Secure computation outsourcing. Addressing this urgent
demand requires the techniques capable of sustaining large-
scale secure computation outsourcing. Unfortunately, none
of the existing approaches are designed for the computa-
tion of such an enormous scale. Particularly, homomorphic
encryption, secret sharing and secure multi-party computa-
tion (SMC) are far too heavyweight to handle read mapping.
For example, a privacy-preserving protocol [17] takes about
5 minutes to calculate the edit distance between two 25-
element sequences through homomorphic encryption and
oblivious transfers. Such a task can be computed much



more efficiently by SMC techniques, thanks to the recent
progress in this area [33, 35]. However, even the state-of-
the-art SMC implementation needs about 4 seconds to pro-
cess two 100-element sequences [33]. Also, secret-sharing
based approaches [17,18] all incur data exchanges between
share holders when aligning a single sequence pair. Given
that a mapping task routinely evaluates the edit distances
for 1015 sequence pairs, all these approaches are simply not
up to this job. Alternatively, one may consider anonymiz-
ing the sequence data by aggregating the reads from mul-
tiple individuals or adding noise. These approaches are
known to be vulnerable to statistical re-identification at-
tacks [32, 34, 46, 56], a threat that prompted the NIH to re-
move all aggregated DNA data [12] from the public domain.

Special features of the problem. We feel that existing
generic approaches all fail to appreciate the special features
of the problem, which can be leveraged to build a practical
solution. Actually, the edit distance considered in read map-
ping is small, typically no more than 6 for standard 100-bp
reads [29]. This is because human genetic variation is be-
lieved to be small, below 0.5%. In practice, the differences
between a read and its counterpart on the reference genome
mainly come from sequencing errors, whose rate is typi-
cally 2-3%. Therefore, a privacy-preserving technique that
works on small edit distances (caused by the variations and
the errors) should be enough for handling most sequence-
analysis tasks.

The cloud also has distinctive features. It is extremely
good at performing simple operations over a large amount
of data, as evidenced by the pervasiveness of MapReduce-
based computing services [23]. Also interesting is the way
that commercial clouds are used in practice: they often
serve as a receiving end of the computation “spill-over”
from an organization’s internal system when its comput-
ing resources are about to deplete. This way of computing,
which involves both the private cloud within an organiza-
tion and the public commercial cloud, is called hybrid cloud
computing [26]. The hybrid cloud has already been adopted
by most organizational cloud users and is still undergoing
rapid development. It also presents a new opportunity that
makes practical, secure outsourcing of computation tasks to
untrusted environments possible: for example, we can split
a task, delegating to a commercial cloud a large amount of
relatively simple computation over encrypted data, like ex-
act string matching, while letting the user’s private cloud
work on a small amount of relatively complicated computa-
tion such as calculating edit distances.

Our approach. Given that read mapping is one of the
most important and pervasive operations in DNA sequence
analysis [54], we believe that a special solution is justified
here to enable secure and practical outsourcing of this com-
putation to the low-cost commercial cloud. In this paper,
we show how the aforementioned features can be used to

serve this purpose. Our idea is based upon the observa-
tion that the edit distance of two sequences can actually be
evaluated by checking the exact matches between some of
their substrings, an operation easy to secure on the pub-
lic cloud, when all we care about is whether the distance
is below a small threshold. This is described by the well-
known seed-and-extend strategy [19], which first matches a
seed, a segment of a read with one-(d + 1)th of the read’s
length given an edit distance d, to the substrings on the ref-
erence genome1, and then extends from these substrings to
align the whole read. Our approach splits the mapping task
along these two stages, delegating them to public and pri-
vate clouds respectively: the public cloud searches for the
exact matches between the keyed hash values of seeds and
those of substrings (called l-mers for a substring of length
l) on the reference genome to determine the possible posi-
tions of reads, while the private cloud extends from these
positions to find the right alignments of these reads (which
involves calculating edit distances under a threshold [28]).

However, this simple approach cannot guarantee to of-
fload most of the mapping workload to the public cloud.
This is because the traditional seed-and-extend approach
used in computational genomics [38] has always consid-
ered the situation when seeding and extension happen on the
same system: there has never been a need to move the work-
load from one stage to the other. Particularly, when seeds
are too short, due to a relatively large edit distance (e.g.,
6 for 100-bp reads), they randomly match a large number
of genetic locations on the reference genome. As a result,
a lot of extensions have to be done on the private cloud.
In our research, we come up with a novel solution, which
transforms the computation workload of the private cloud
to the spatial cost for the public cloud. More specifically,
our approach uses seed combinations to ensure that only a
relatively small number of extensions happen to each read.

We conducted a security analysis of our technique over
the reference genome, particularly on the threat of fre-
quency analysis. This risk is found to be minimum by our
experimental analysis over the whole genome, due to the
special structure of human genome: most of its l-mers be-
come unique when l grows over 20. Our performance eval-
uation on a cross-the-country cloud testbed with real human
microbiome data indicates that the technique is sufficiently
practical for real-world use: it mapped 10 million reads to
the whole reference genome in a few hours, outsourced over
97% of the workload to the public cloud and maintained an
acceptable level of overall computational, communication
and spatial overheads.
Contributions. Here we summarize the contributions of
the paper:
• Practical privacy-preserving mapping technique. We

1At least one seed will match a substring on the region within d edits
from the read.



propose a new technique that makes an important step to-
wards secure and scalable DNA sequence mapping. Run-
ning on the hybrid-cloud platform, our approach works ef-
fectively against inference attacks and has the capacity to
process millions of reads with most of the workload being
outsourced to the public cloud. This opens the great po-
tential to use the cheap computing resources of the com-
mercial cloud to meet the urgent demand of analyzing a
large amount of NGS data. Although the technique was de-
signed for read mapping, lessons drawn from this study can
have broader implications: the idea like combining light-
weight cryptography/aggregation and transforming com-
plicated computation to easy-to-protect but data intensive
computation for the cloud could find other applications in
the domains that need practical privacy protection.
• Implementation and evaluation. We implemented our

technique over Hadoop, and evaluated the privacy and the
performance of our prototype using real human microbiome
data, on a large-scale, across-the-country cloud testbed.

The focus of our research is confidentiality, as it is the
main hurdle to outsourcing read-mapping computation to
the public cloud and therefore urgently needs practical so-
lutions. Although integrity of cloud computing is no doubt
important, so far people are willing to live with the risk that
their tasks may not be handled correctly by the cloud. This
is evidenced by the fact that mapping of non-human reads
already happened on EC2 [47], while the tasks involving
human data are not allowed to be given to the public cloud.

Roadmap. The rest of this paper is organized as fol-
lows. Section 2 describes security challenges in outsouring
anonymized read data; Section 3 presents our secure map-
ping techniques and analyzes the privacy protection they of-
fer; Section 4 reports an evaluation on the performance of
our approach; Section 5 surveys related prior research and
Section 6 concludes the paper.

2 Backgrounds

2.1 Read Mapping

The DNA data produced by a next generation DNA se-
quencer consists of millions of reads, each typically includ-
ing 100-120 nucleotides. These reads are randomly sam-
pled from a human genome. To interpret them, their ge-
netic locations must be found, which is achieved through
read mapping. Specifically, given a set of reads, a refer-
ence genome (i.e., a long DNA sequence) and a thresh-
old, the mapping operation aims at aligning each read to
a substring on the reference genome such that the edit dis-
tance between the read and the substring does not exceed a
threshold. This operation positions each read to its genetic
location, which is necessary for most human DNA analy-
ses, including SNP discovery, genotyping, gene expression

profiling (e.g. RNA-seq), comparative genomics, personal
genomics and others [49]. It is also a critical step for analyz-
ing the DNA data of human microbes [8], serving to sanitize
such data by removing the DNA contamination from human
hosts.

Reference genome

Read

AGTTGGAGCCGTTAAT

Insert C Delete G
Replace G 

with C
Match

ACTTGGAGTCCTTACA

Figure 1. An Example (two sequences with
edit distance 3)

Seed-and-extend. As discussed before, a prominent feature
of read mapping is that the edit distance is small between
a read and the reference substring it should be aligned to:
since the genetic variation between different humans is typ-
ically below 0.5% and sequencing errors are about 2-3%,
almost all the mapping tasks look at a distance threshold
no more than 6 for standard 100-bp reads [29], which is
sufficient for tolerating both the variations and the errors.
For such a small edit distance, alignments can be efficiently
found through seed-and-extend [19], a method that has been
extensively used in high-performance mapping systems like
BLAST [15], BLAT [36], Bowtie [37], RMAP [50, 51] and
CloudBurst [47]. The method is based upon the observa-
tion that for a sequencing read partitioned into d + 1 seg-
ments (seeds) of length l, if it has at most d errors, then
at least one of its d + 1 segments must match a substring
at the genetic location (on the reference genome) the read
should be mapped onto [19]. Therefore, one can use the seg-
ment to roughly locate the read on the reference (the seeding
stage), and then extend from these possible locations to de-
termine where it indeed belongs (the extension stage). Fig-
ure 1 gives an example: one of the 4 seeds of a 16-bp read
matches a 4-mer on a reference substring when the edit dis-
tance between them is 3; once this match is found, we can
align these two strings to check whether the distance is in-
deed no more than 3. Our idea is to let the public cloud take
care of the seeding, roughly locating reads, which enables
the private cloud to quickly extend each read at a relatively
small set of positions (rather than at each of the 6 billion po-
sitions on the reference genome). The extension is done by
a linear algorithm that calculates the edit distances no more
than a threshold [28].

2.2 Privacy threat

Threat. The main threat to human genomic data is iden-
tification of the individual the DNA comes from. Since



such data is often produced by clinic studies, its donor, once
identified, could be linked to the disease under the study,
which can have serious consequences such as denial of ac-
cess to health/life insurance, education, and employment.
The Health Insurance Portability and Accountability Act
(HIPAA) requires removal of explicit identifiers (such as
name, social security number, etc.) before health data can
be released [11]. This protection, however, was found to be
insufficient for genomic data, as re-identification can still
happen through examining the genetic markers related to
the donor’s observable features (i.e., phenotypes) after the
genetic locations of reads are recovered, a concern shared
by the NIH [12].

The genetic variation most widely-used for such iden-
tification is single-nucleotide polymorphism (SNP). SNP
occurs when a single nucleotide (A, T, C or G) differs
between the members of a species. It can take one of
two alleles, either 0 (major) or 1 (minor). This variation
has been employed by all existing re-identification tech-
niques [32, 34, 46, 56]. Theoretically, other variations, in-
cluding rare alleles [48] and copy number variation (varia-
tions over sections of DNA) [13], could also be used to iden-
tify an individual. However, a critical barrier for the identifi-
cation based on rare variations is that they are not mapped at
the whole genome scale in any reference population. Also
note that to pose the same level of the threat, those vari-
ations need a larger population: given that rare-allele fre-
quencies are much lower than those of SNPs, a population
100 or even 1000 times larger than the HapMap popula-
tion (about 270 people) may need to publish their whole
genomes for accurate estimate of the frequencies, which
may not be likely given the increasing awareness of the pri-
vacy implication of DNA data. Note that under the protec-
tion of our technique, an adversary cannot infer the rare al-
leles from the data on the public cloud (i.e. the keyed-hash
values of l-mers, not their content), because without known
rare allele frequencies in a reference population, the hash
values of these l-mers are indistinguishable from those not
belonging to human, such as those of microbes. For copy-
number variations, a recent study [22] shows that their iden-
tification power is way lower than SNPs, due to their small
numbers (only about 5,000), much lower density in compar-
ison to SNPs, and continuous distributions [42]. Therefore,
it is commonly believed that the threat can be easily miti-
gated by simple approaches like data aggregation. So far,
no known re-identification techniques use such variations.

Challenges in outsourcing read mapping. To enable read
mapping to happen on the public cloud, we need to either
encrypt the data or anonymize it, making it unidentifiable.
Unfortunately, only a few cryptographic approaches [17,18,
20, 33, 35, 55] support secure calculation of edit distances,
and all of them are too expensive to sustain a large-scale
computation like read mapping (Section 5). Less clear is

the efficacy of simple data anonymization techniques such
as aggregation, noise adding and data partition. These tech-
niques have long been used to protect genomic data. As
a prominent example, Genome-Wide Association Studies
(GWAS) typically use DNA microarrays to profile a set
of pre-determined SNPs from a group of patients (called
case) to study the genetic traits of their common disease.
The SNPs from different case individuals were often ag-
gregated into a mixture, from which nothing but the counts
(or equivalently, the frequencies) of different SNP values
(alleles) can be observed and used for statistical analysis.
Such aggregate data was deemed safe to release. How-
ever, recent studies show that the data is actually vulnerable
to a type of re-identification attacks [32, 34, 46, 56]: given
the allele frequencies of a reference population, which can
be acquired from public sources such as the International
HapMap Project [9], and a DNA sample from an individ-
ual, her presence in the case population can be determined
from the aggregate data through a statistical test.

Different from the microarray data studied in the prior
work [32,34,46,56], the SNP sets covered by the reads from
two persons often differ significantly, due to the randomness
in sequencing. In our research, we systematically evaluated
the effects of these anonymization techniques on read data
using a near-optimal test statistic proposed in the prior re-
search [32]. Our findings show that such data is equally
vulnerable to the re-identification attack. For example, to
ensure that no more than 10% of a case group can be iden-
tified at a confidence of 0.99, we found that the reads from
about 38000 individuals, with 1 million reads each, need
to be aggregated. The details of this study is presented in
Appendix 7.1.

3 Secure Read Mapping

3.1 Overview

Private Cloud Public Cloud

Encrypted Query 

Seeds

Seeding Results

Sorted Query 

Seeds

Pre-sorted 

Reference

SeedingExtending

Figure 2. High-level design of our system.

Our design. The high-level design of our techniques is il-
lustrated in Figure 2. Our approach is built upon a hybrid



cloud: the public commercial cloud is delegated the compu-
tation over the keyed hash values of read data, while the pri-
vate cloud directly works on the data. Our idea is to let the
private cloud undertake a small amount of the workload to
reduce the complexity of the secure computation that needs
to be performed on the public cloud, while still having the
public cloud shoulder the major portion of a mapping task.
To this end, we divided the task according to the seed-and-
extend strategy [19]. The seeding part roughly locates a
read on the reference genome by matching a small segment
of it to the substrings on the genome. For example, given an
edit distance of 3 and reads of 100 bps, we can partition each
read into 4 segments (seeds), each of 25 bps. At least one
of these seeds will match a 25-mer on the read’s counterpart
on the reference genome. Searching for this position is done
over the keyed-hash values of the seeds and 25-mers: we
first extract all 25-mers from the reference genome, remove
repeated sequences and fingerprint the distinctive ones with
a cryptographic hash function and a secret key; these refer-
ence hash values are compared with the hash values of the
seeds on the public cloud; all the matches found are reported
to the private cloud, which extends the reads from the ge-
netic positions (on the reference genome) indicated by these
matches to find an optimal alignment for each read, using a
threshold edit-distance algorithm (Section 3.2).

This basic approach works when the seeds are long
enough to suppress random matches: for example, most 25-
mers are unique across the genome, so a 25-bp seed often
locates a read at a small set of positions, which reduces the
workload of calculating edit distances between millions of
reads and billions of reference 25-mers to the extensions
that just need to happen at millions of positions. However,
the seeds can be short in practice. For example, given an
edit distance of 6, the seed for an 100-bp read has only 14
bps and often matches thousands of positions. To address
this problem, we improve the basic approach to perform the
seeding over keyed-hash values for 2-combinations of 12-
bp seeds, which significantly reduces the workload of the
private cloud at a spatial cost easily affordable by modern
clouds (Section 3.3).

The privacy assurance of our techniques is evaluated by
the amount of information the public cloud can infer from
the data it observes. To achieve an ultra-fast mapping, we
adopted keyed hash, which allow the public cloud to uni-
laterally determine whether a match happens. This, how-
ever, brings in the concern about a frequency analysis that
infers the content of l-mers by counting the matches their
hashes receive. To assess this risk, we conducted a whole
genome study, which demonstrates that the adversary ac-
tually cannot achieve any re-identification power through
such an analysis (Section 3.4).

Adversary model. We consider an adversary who aims at
re-identifying the individuals related to read data. As dis-

cussed before, we focus on this re-identification threat be-
cause it is the main privacy concern for releasing protected
health information [32,34,46,56], which includes sequenc-
ing reads, and therefore the major barrier to moving read
mapping to the public cloud. We assume that the private
cloud is trustworthy while the nodes on the public cloud can
be compromised and controlled by the adversary. Also, we
assume that the adversary has a DNA sample of a testee, the
person she wants to identify from a read dataset, and a refer-
ence population genetically similar to those whose reads are
inside the dataset. Access to such knowledge is widely con-
sidered to be a very strong assumption [30] that gives the
adversary advantages. It serves as the standard background
information in all studies on re-identification threats to ge-
nomic data [32,34,46,56], and the foundation for evaluating
whether such data can be safely released [10, 46]. Finally,
note that all we care about here is to prevent the adversary
from identifying read donors, rather than to ensure the suc-
cess of the computation, which may not be achieved when
the adversary controls the public cloud.

3.2 Computation Split

In this section, we elaborate the basic design of our tech-
nique, which is also summarized in Table 1.
Data preprocessing. To perform the seeding on the pub-
lic cloud, we need to compute the keyed-hash values for
both the reference genome and individual seeds. Specifi-
cally, given a keyed hash function HK() with a secret key
K, our approach first fingerprints all distinctive l-mers αi
on the reference genome: HK(α1), HK(α2), · · · and then
sends their hash values (in a random order) to the public
cloud. We remove all repeats here to mitigate the risk of
a frequency analysis. Depending on the length l, l-mers
have different levels of repetitions on a human genome:
for example, we found that more than 80% of 24-mers are
unique on the reference genome. Note that such data pro-
cessing and transfer only need to be done once to enable the
public cloud to map a large number of read datasets using
the hashed reference. For each dataset, we compute keyed
hashes for the seeds sj extracted from each read, HK(s1),
HK(s2), · · · , HK(sd+1), randomly permutate this list and
then deliver it to the public cloud for the seeding operation.
Our implementation adopts SHA-1 and a 256-bit secret key,
and only uses the first 10 bytes of an l-mer’s hash as its
fingerprint for the comparison. The rest bytes are XORed
with the information for locating the l-mer on the reference
genome.
Computing on the public cloud. The seeding task dele-
gated to the public cloud is as simple as comparing all the
hashes of the seeds with those of the reference l-mers and
reporting the indices of the matched sequence pairs (i, j)
to the private cloud. The only problem here is the scale



Table 1. Privacy-Preserving Read Mapping: the Basic Approach

• Generating keyed hashes for reference l-mers (one-time cost). Given an edit-distance threshold d and a read length
λ, set l = λ

d+1 . For each distinctive l-mer αj on the reference genome, compute HK(αj) (j is unrelated to the
l-mer’s position). Remove all the repeats and send the distinctive hash values to the public cloud.
• Generating keyed hashes for seeds. On the private cloud, for each read in a given read dataset, break it into d + 1

seeds with a length of l each. Compute HK(si) for every seed si and send all these hash values to the public cloud.
• Seeding. On the public cloud, compare the hashed seeds to the hashed references. For all HK(αj) = HK(si), send

(i, j) to the private cloud.
• Extension. On the private cloud, for every matched pair (i, j), extend the read including si from the genetic location

pinpointed by αj on the reference genome to check whether the edit distance (between the read and the substring
on that location) is no more than d.

of this computation, which involves millions upon billions
of string comparisons. One way to achieve a fast seed-
ing is to build an index for the reference genome, as typ-
ically done by the fast-mapping software designed to work
on standalone systems. This approach, however, needs a
huge amount of memory and cannot be easily parallelized.
Our implementation uses ultra-fast sorting, which the cloud
is good at, to do the seeding. Specifically, the public cloud
pre-sorts the reference l-mers according to their hash val-
ues. For every batch of seed hashes, the cloud first sorts
them and then merges them with the sorted l-mer hashes
to find matches. This strategy has also been adopted by
CloudBurst [47], a famous cloud-based (yet insecure) map-
ping system. Today’s cloud can already support high-
performance sorting: for example, Terasort [44] running
on Hadoop attained a sorting speed of 0.578 terabytes per
minute.

Computing on the private cloud. The private cloud ex-
tends the seeds at the locations where matches happen.
These locations are recovered from the indices of seed
hashes and the l-mer hashes they match, as reported by
the public cloud. For this purpose, two look-up tables are
needed: one maps the hash of an l-mer to its occurrences
on the reference genome, and the other maps that of a seed
to its read. The first table is relatively large, at least 10
GB. We reduced the size of the table using the features of
human genomes. When l goes above 20, most l-mers are
unique across the reference genome. Particularly, only a
small portion (below 20%) of 24, 25-mers repeat. For every
unique l-mer αi, our approach keeps its location informa-
tion directly on the last 6 bytes of HK(αi). Specifically,
let θi be these bytes; we XOR the location of αi, Li, onto
θi: πi = θi ⊕ (Ii||Li), where Ii is a one-byte indicator for
the uniqueness of the l-mer. Once this l-mer is matched by
a seed (that is, the first 10 bytes of the seed’s hash match-
ing the first 10 bytes on the l-mer’s hash), Li is recovered
from πi using θi, which comes from the hash of the seed
and is kept on the private cloud. For those still in the table,

we organize them according to the indices of their hashes to
ensure that only sequential access happens when searching
the table.

When the read dataset is relatively small (10 million
reads or less), its look-up table, which does not go above 1.2
GB, can often be accommodated in the memory. In the ta-
ble, we also keep the last 6 bytes of seed hashes for decrypt-
ing the location information of the l-mers they matched. To
handle a large dataset, our design encrypts the read infor-
mation Rj for a seed sj using a simple stream cipher such
as AES CTR. Specifically, we first compute the key-stream
σj = EK′(V ||j), where E() is an encryption algorithm, V
is an initial vector and K ′ is another secret key, and then
use the first 10 bytes of the stream to do the encryption:
τj = σj ⊕ (Rj ||θj), where θj is the last 6 bytes of HK(sj).
This ciphertext is concatenated with the first 10 bytes of the
seed’s hash, and given to the public cloud. Once a match is
found between the hashes of αi and sj , it sends (πi, τj , j)
to the private cloud for recovering Li and Rj .

The workload of the private cloud is determined by the
number of extensions it needs to perform for each read. As
discussed before, when l is no smaller than 20, most l-mers
are unique and thus the reads whose seeds match them of-
ten need to be extended only a few times. Among the rest
of l-mers that reoccur on the genome, some of them are
actually part of longer repetitive substrings, and only need
to be extended once for all these reoccurrences. This can
be achieved by compressing the reference genome accord-
ing to its 100-mers: we can identify all distinctive 100-mers
and extend the reads on them instead of the whole genome.
Also important here is an efficient extension algorithm. Our
implementation utilizes a threshold dynamic programming
algorithm [28] to compute the edit distance no more than
a threshold d. This algorithm’s complexity is only O(dλ),
where λ is the length of the read.
Discussion. This application of seed-and-extend works
well when the seeds are at least 20 bps. Given standard
100-bp reads, this means that the edit distance we are look-



Table 2. Privacy-Preserving Read Mapping: Seed Combinations

• Generating keyed hashes for combined l-mers (one-time cost). Set l = λ
d+2 , with a distance threshold d and a read

length λ. For every λ-mer (substrings of λ long) on the reference genome, compute the keyed hash values for all
the 2-combinations of the l-mers it contains: HK(α1||α2), HK(α1||α3), · · · , HK(αλ−l||αλ−l+1). Remove all the
repeats and send the distinctive hash values to the public cloud.

• Generating keyed hashes for seed combinations. On the private cloud, break each read into d+2 equal-length seeds.
Compute the keyed hashes for all 2 combinations of the d + 2 seeds: HK(s1||s2), · · · , HK(sd+1||sd+2). Send the
hashes for all the reads to the public cloud.

• Seeding. On the public cloud, compare the hashes of combined seeds to those of combined l-mers. For any two
hashes that match, send their indices (i, j) (i for the hash of the combined seed and j for that of the combined l-mer)
to the private cloud.

• Extension. On the private cloud, for every matched pair (i, j), extend the read associated with the combined seed
from the genetic location identified by the combined l-mer to check whether the edit distance is no more than d.

ing at should not go above 4. Our research shows that less
than 20% of 24-mers re-occur. To prepare for a mapping
task, the private cloud must compute the keyed hashes for
reference l-mers, which only needs to be done once, and
seed hashes for every dataset. Using a high-end desktop
(2.93 GHz Intel Xeon), we found that SHA-1 achieved a
throughput of 100 million 25-mers per minute using a sin-
gle core. In other words, a typical dataset with 10 million
reads can be proceeded around a minute. Fingerprinting the
whole reference genome took longer time, about 7 minutes
using 8 cores. However, this only needs to be done once.
Note that SHA-1 is not known for its speed. We chose it in
our implementation just for simplicity. Many other crypto-
graphic hash functions perform much better [7]. Our eval-
uations (Section 4) show that this approach moved the vast
majority of the workload to the public cloud, compared with
the situation when the whole computation is done within the
private cloud.

3.3 Combined Seeds

Short seeds. When edit distance goes up to 6, the 7 14-
bp seeds of a read often align it to hundreds or even thou-
sands of possible positions for extensions. For example, in
a microbiome filtering task described in Section 4, our ex-
periment shows that on average 895 extensions need to be
made before an alignment within the edit distance of 6 could
be found for one read. To reduce the number of matches,
our idea is to use multiple seeds: given an edit distance d,
we can partition a read into d + 2 seeds, of which at least
2 will have exact matches on the region the read should be
aligned to. For example, a 100-bp read, once partitioned
into 8 12-bp seeds, can use 2 seeds (totally 24 bps long)
to find out the 100-mers to which its distance may not ex-
ceed 6. Given the total length of such combined seeds, most
reads can be located at a few genetic positions: in the micro-

biome filtering task mentioned above, the 2-combination of
12-bp seeds successfully aligns a read within 28 extensions
on average. A straightforward implementation of this idea,
however, forces the private cloud to intersect a large number
of positions randomly matched by the short seeds for each
read before the reference substrings including both seeds
can be identified. This intersection operation often incurs
a significant overhead, which sometimes even exceeds the
cost for simply running the whole task locally. As a result,
the private cloud often has to shoulder most of the mapping
workload.
Mapping 2-combinations. Our answer to this challenge is
a novel design built upon the special features of the cloud.
Today’s clouds are designed for data intensive computa-
tions, and can easily store and process terabytes of data
at a low cost, as long as the operations on such data are
simple and parallelizable. This property allows us to trade
the spatial cost on the public cloud for the reduction in
the computing workload on the private cloud, converting
the intersection operation to the string matching that hap-
pens between the keyed-hash values of 2-seed combinations
and those of l-mer combinations. Specifically, for every
100-mer on the reference genome, we save to the public
cloud distinctive hashes for all the 2-combinations of its
l-mers αi: HK(α1||α2), HK(α1||α3), · · · , HK(α2||α3),
· · · , HK(α100−l||α101−l). Given a read dataset, the private
cloud also fingerprints all the 2-combinations of d+2 seeds
sj for each read: HK(s1||s2), · · · , HK(sd+1||sd+2). These
combined-seed hashes are compared to those of the l-mer
combinations on the public cloud to help locate the reads
on the reference genome. This approach is summarized in
Table 2.

To perform this seeding operation, the public cloud
needs to accommodate the keyed hashes for both reference
l-mer combinations and combined seeds. Each 100-mer
contains 101 − l different l-mers and totally (101−l)(100−l)
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Figure 3. 12-mer Combinations in 100-bp Win-
dows on the Genome

combinations. For example, there are 3916 combinations
of 12-mers within a 100-bp window. However, the total
size of the reference will not grow that much, as the seeds
within two overlapping 100-mers are also heavily over-
lapped: from Figure 3, we can see that whenever the win-
dow right shift by one bp, only one new l-mer has been cre-
ated, which brings in an additional 100 − l combinations.
Therefore, the total size of the reference actually increases
by roughly 100 − l times. In the above example, 12-mer
combinations are about 88 times of the total size of all ref-
erence 12-mers. Using the 16 bytes of the 20-byte output
of SHA-1, the keyed hashes for the reference sequences
have about 6.8 TB. Storing, transferring and processing this
amount of data are extremely economic for today’s commer-
cial clouds. For example, to keep such data at Amazon Sim-
ple Storage Service (S3), the NIH only needs to spend $890
per month [4]. Transferring the data to the EC2 is com-
pletely free [4]. In practice, a typical approach is simply to
mail a hard drive, a standard service adopted by the S3 when
bandwidth is low [5]. Note that this is just a one-time cost,
and data storage and transfer at that scale are quite com-
mon for today’s cloud users. Operations on this reference
include sorting and merging with the hashes of combined
seeds, which can also be efficiently done through ultra-fast
sorting algorithms [44]. On the other hand, the seed com-
binations cause a much smaller rise in the spatial cost: the
number of 2-combinations of d+2 seeds is (d+1)(d+2)

2 , just
d+1
2 times the size of the seeds. For example, the keyed

hash data of 12-bp seed combinations for 10 million 100-
bp reads has about 2.8 GB, roughly 10 times the size of the
read dataset.

The private cloud needs to compute the hashes and de-
liver them to the public cloud for each mapping task. Given
merely d+1

2 times of the increase in the size of the data, the
overheads for computing and transferring those hashes can
be easily afforded. Since the combined seeds often are
sufficiently long (≥ 20 bps), most of them are distinctive
across the reference genome: as an example, our research
shows that nearly 70% of combined 12-mers (24 bps long)
are unique. This helps reduce the number of extensions per-
formed on the private cloud. To further avoid unnecessary
extensions, our approach uses a strategy that for each read,
we first extend the combined seed with a unique match.

This works particularly well for the task like microbiome
filtering, which stops to remove a read as soon as it is found
similar to a human 100-mer. A major engineering challenge
on the private cloud side is the sizes of the look-up tables.
The one for finding reads (from the combined seeds) is still
okay, and can always be replaced with the encoding tech-
nique as described in Section 3.2. The other one, which
maps l-mer combinations to their positions on the reference
genome, needs to be expanded by nearly 40 folds, and has
a size of roughly 400 GB. To work on this table efficiently,
we can partition it into a set of sub-tables and distributed
them to multiple nodes on the private cloud. As discussed
in Section 3.2, the content of the original table is organized
according to the index order of the hashes for l-mer com-
binations on the public cloud, for the purpose of sequential
data access from the hard drive. Here, we further ask the
public cloud to group the matches it found into several bins
with regard to the index ranges of the sub-tables, and then
dispatch these bins to different nodes for distributed table
look-ups and extensions on the private cloud. Another ap-
proach is simply encrypting the genetic locations for the l-
mer combinations that repeat less than 10 times on the refer-
ence genome, and saving them on the public cloud. When-
ever the hash value of one such combination is matched, the
ciphertext of its locations is sent back to the private cloud.
This strategy trades bandwidth consumption for the saving
of data processing time on the private cloud.
Discussion. Using combined seeds, we essentially out-
source the computing burden of intersecting the matches
produced by short seeds to the public cloud, which further
reduces the proportion of the overall workload the private
cloud needs to undertake. This has been justified by our ex-
perimental study (Section 4). Also, although computing
the hash values for all 12-mer combinations takes about 11
hours and a half using 8 cores (2.93 GHz Intel Xeon), the
operation only needs to be performed once. The cost for
processing each dataset is still very low: for example, 280
million seeds for 10 million reads took 6 minutes to hash.

3.4 Privacy Analysis

Our study. Our approach exposes nothing but keyed hash
values of seeds and l-mers to the public cloud, from which
the adversary cannot directly recover reads. We further en-
sure that only the hashes of distinctive l-mers are disclosed,
making them hard to distinguish by an observer. Under such
protection, what is left to the public cloud is just the counts
of the exact matches that individual reference hashes (those
of l-mers or combinations) receive from the hashes of seeds
or combined seeds. Therefore, the adversary’s best chance
is leveraging such information and the background knowl-
edge at her disposal, i.e., the genomes of a reference popu-
lation and a DNA sample from the testee, to determine the



presence of the testee’s DNA in the read dataset she cannot
directly access. We analyze the threat in this section.

As discussed in Section 2.2 and 3.1, we made two
assumptions in our study. First, we assume the afore-
mentioned background knowledge for the adversary. This
would not be necessary if we wanted to achieve differen-
tial privacy [25], a privacy goal that does not rely on any
assumption of background knowledge. However, such a
privacy guarantee is often too strong to attain in practice,
particularly in the case of read mapping where the genetic
locations of reads and the distributions of their hashes are
not known in advance and expensive to get. Also, the
background information we used has been assumed in all
prior studies on re-identification risks in human genomic
data [32, 34, 46, 56], as it reflects the special features of the
data, and serves as the foundation for evaluating when it can
be released [10]. Actually, even this assumption has already
been complained of as being overpessimistic [30] by the ge-
nomics community, because the knowledge it assumed of-
ten cannot easily come by in practice. Our objective is to
show that even under such an assumption, which is strongly
in favor of the adversary, she still cannot acquire identifiable
information from the public cloud. Second, our analysis fo-
cuses on SNPs, as for the time being, other genetic varia-
tions cannot be effectively used for re-identification during
read mapping (see Section 2.2).

l-mer based re-identification. The public cloud only ob-
serves the frequency with which the keyed hash value of
each reference l-mer has been matched. This frequency
is actually the l-mer’s average rate of occurrence across
genome datasets. The only thing the adversary can do is
trying to map each hash value to its plaintext l-mer, accord-
ing to their frequencies (i.e., the average rate of occurrence)
calculated from seed-hash datasets and public genome data
(e.g., the HapMap population and the reference genome)
respectively. In most situations, however, this attempt will
not yield unique answers, as many l-mers share same fre-
quencies: for example, roughly 5 billion 24-mers on the
reference genome are unique; many of them have same av-
erage rates of occurrence (e.g., those carrying single SNPs
with identical allele frequencies) in a population. In the end,
what the adversary can get is just a mapping between a set
of hash values and a set of plaintext l-mers with the same
average rate of occurrence, assuming that she learnt the rate
from her long-term observations. Within a pair of such sets,
the adversary cannot determine which hash indeed belongs
to a given l-mer through the frequency analysis, as each
of such hash values and l-mers has an identical frequency.
Here, we use bin to describe this set pair, i.e., a set of l-mers
grouped by the frequency they share and their correspond-
ing set of hash values. Note that this is the best the adver-
sary can achieve without considering the relations among
the hash values. Such relations are actually very difficult to

establish in practice, as elaborated in Appendix 7.3.
Consider the h bins Bk∈[1,h] the adversary is able to

identify from all the seed-hash datasets she sees. Given
a specific seed-hash set (the case group) that involves the
seeds from multiple individuals, these bins are the only at-
tributes at the adversary’s disposal for a re-identification at-
tack. Specifically, what she can do is to find out the ag-
gregated frequency of all the hash values within Bk for the
case group. For example, suppose that only two hash values
η1 and η2 are in Bk and they totally show up 1000 times
in the 1-million-seed case group; the frequency of Bk be-
comes f̄k = 0.001 for the case. Then, the adversary figures
out the aggregated frequency of the l-mers in the bin for
a reference population (e.g., the Hapmap group), F̄k, and
that for a DNA sample from the testee, ρk. In the example,
F̄k = 0.0012 if the two l-mers inBk, l1 and l2, occur totally
1200 times in 1 million l-mers of the reference population2.
In this case, the best the adversary can do is to run the most
powerful statistical test over f̄k, F̄k and ρk for all h bins to
determine whether the testee is present in the case group:
i.e., whether the hash values of the testee’s seeds (which the
adversary cannot see) are included in the seed-hash dataset.
If we treat these bins as a set of attributes like SNPs, this re-
identification problem does not fundamentally differ from
that studied in prior research [32, 46]. Therefore, the test
statistic reported by the prior work also works here:

D̄ =

h∑
k=1

D̄k =
∑
k

[|ρk − F̄k| − |ρk − f̄k|] (1)

D̄ is called Homer-like test, as it is a direct application
of Homer’s test [32], which works on the allele frequen-
cies of SNPs, to the re-identification over the frequencies
of bins (f̄k, F̄k and ρk). This test is known to be close to
optimal [46] in re-identifying the testee from the case group
given the aforementioned background knowledge. The truly
optimal test is the famous log likelihood ratio test [46], ac-
cording to the Neyman-Pearson lemma:

T̄ =

h∑
k=1

T̄k =
∑
k

[log(PrCk (ρk))− log(PrRk (ρk))] (2)

Let ρ̄Ck be the aggregated rate of occurrence for a case
individual’s seeds (l-mers) in Bk over all her seeds. In
Equation 2, PrCk (ρk) represents the cumulative probability
for seeing case members whose ρ̄Ck are even less likely to
observe than ρk (the frequency of the testee’s Bk) accord-
ing to the distribution of ρ̄Ck in the case group, which we
pessimistically assume that the adversary knows. Similarly,

2It is meaningless to check the frequencies of η1, η2, l1 and l2 for the
case/reference/DNA sample, as the hashes cannot be linked to the l-mers.
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Figure 4. Power Analysis and Comparison. On bin aggregated l-mer frequencies: (a) the Homer-like
statistic test D̄ (Equation 1) (b) the likelihood ratio test T̄ (Equation 2). On SNP allele frequencies: (c)
Homer’s test [32] D̄′ =

∑h
k=1 D̄

′
k =

∑
k[|ρ′k − F̄ ′k| − |ρ′k − f̄ ′k|], where ρ′k is the testee’s allele for SNP k,

and F̄ ′k and f̄ ′k are the major allele frequencies for the SNP on the reference and the case populations
respectively. (d) the likelihood ratio test [46] T̄ ′ =

∑h
k=1 T̄

′
k =

∑
k[log(P̄Ck (ρ′k)) − log(P̄Rk (ρ′k))], where

P̄Rk = F̄ ′k if ρ′k is major allele and P̄Rk = 1 − F̄ ′k otherwise, and P̄Ck = f̄ ′k if ρ′k is a major allele and
P̄Ck = 1 − f̄ ′k otherwise. All the statistics were computed for each of 40 case individuals (blue
dots) and 40 test individuals (red squares). The distributions of D̄ and T̄ in these two groups are
indistinguishable in (a) and (b), while those of D̄′ and T̄ ′ are completely separated in (c) and (d). The
dash lines represent the 1% false positive rate level. The individuals identified at this rate are above
the lines for all statistics except for T̄ , where the identified are below the line.

PrRk (ρk) is the cumulative probability for the reference in-
dividuals with regards to ρk. Note that to avoid comput-
ing complicated joint distributions, Equation 2 treats bins
as being independent from each other. In practice, the cor-
relations among the vast majority of bins are indeed weak,
given the fact that each of them typically covers many SNPs
and only in rare cases, a small portion of the SNPs in one bin
also appear on the l-mers in other bins. Even when strongly
correlated bins are found, the adversary still cannot build
a stronger log likelihood ratio test (the most powerful test)
over them, simply because identifying related hash values
is very difficult (Appendix 7.3), not to mention determin-
ing the joint distributions over these values in different case
bins, a prerequisite for the test.

Power analysis. Given the background knowledge, the two
test statistics are the most powerful identification tools avail-
able to the adversary. Here we report a study that evaluated
the identification powers of these statistics over real DNA
data from the largest population available in the public do-
main. In this study, we compressed the whole reference
genome into 372,869,332 distinctive 24-mers that involve
SNPs. The selected 24-mers were further classified into
7,260,607 bins according to their frequencies. For simplic-
ity, this was done in a way that gives advantage to the adver-
sary. Specifically, the 24-mers involving a single SNP were
grouped into bins according to their frequencies, which de-
pended not only on their rates of occurrence across the ref-
erence genome but also on the allele frequencies (3 digits
of precision) of their SNPs. For those associated with more
than one SNP, we just created a unique bin for each of them,
assuming that they were identified by the adversary.

The reference individuals in our study were acquired

from the reference human genome. To produce realistic hu-
man genome sequences for multiple individuals, we ran-
domly set the alleles for the SNP sites on the reference
genome according to their allele frequencies reported by
the HapMap. F̄k in the Homer-like test (Equation 1) and
the distribution in the likelihood ratio test (Equation 2) were
estimated from 100 such sequences, which constituted the
reference group. We used the YRI population (80 individu-
als) on the HapMap [9], the largest population whose DNA
data is available in the public domain, to construct a case
group and a test group (a population including neither case
nor reference individuals). Each of these two groups had
about 40 individuals. We sampled 10 million reads from
each individual in the case group to compute f̄k and the
distribution of Bk frequencies. Then, we repeatedly ran D̄
(Equation 1) and T̄ (Equation 2) for 40 times over randomly
selected case/test groups with individual group members as
testees, and found that each time the case and the test indi-
viduals were completely indistinguishable. An example is
presented in Figure 4 (a) and (b), which illustrates the power
of D̄ and T̄ in one experiment. For D̄, at 1% false positive
level (denoted by the dash line), one in the case and one in
the test group (i.e., a false positive) were identified (above
that line), indicating equal true positive and false positive
rates, so no statistical power was achieved. For T̄ , only a
test individual was identified (below the line), which is a
false positive.

We further compared this outcome with the identification
powers the adversary can get in the absence of the new pro-
tection we propose here, i.e., when the DNA data of the case
individuals was just aggregated, the standard protection the
NIH took. Over the aggregated data, the adversary observes
the allele frequencies of different SNPs and can therefore



run both tests over these frequencies [32,46] using the same
background knowledge (the reference and the DNA sample
from the testee). In our experiment, we ran these tests on
the SNPs of the same populations. The results, as presented
in Figure 4 (c) and (d), show that both tests easily separated
the case and test populations. In contrast, these tests were
completely ineffective upon the keyed hashes our approach
exposes to the public cloud (Figure 4 (a) and (b)). This
strongly indicates that our techniques offer effective protec-
tion against the most powerful known re-identification at-
tacks. In Appendix 7.2, we show that D̄ and T̄ also cannot
achieve a higher power on the combined seeds.

4 Performance Evaluation

4.1 Experiment Setting

Our evaluation was performed over a microbial filtering
task [8]. The sequences extracted from human microbes
include the DNA information of their hosts, which, if not
taken out, will not only contaminate the outcome of a micro-
biome analysis but also disclose the identities of the donors
the microbes come from. Therefore, one of the most im-
portant read-mapping tasks is to compare the reads from
microbiome datasets to the reference genome, to identify
and remove those belonging to humans. For the time be-
ing, this task is still undertaken by the NIH internal servers,
but there are strong demands to move the computation to
the low-cost public cloud given the privacy of the donors is
protected [52].
Data. We utilized a real microbiome dataset collected from
a fecal sample of a human individual [45]. The dataset con-
tains 10 million reads, totally 250 MB, a data scale typical
in today’s microbe projects. In our research, we added to
the dataset 500,000 human reads collected from the refer-
ence genome, a typical level of human contamination (5%)
in microbiome data, as the original dataset was already san-
itized, being removed of human sequences. These human
reads were randomly sampled from Chromosome 1 (Chr1),
the largest chromosome with 252.4 million bps, Chromo-
some 22 (Chr22), the smallest one with 52.3 million bps,
and the whole genome with 6 billion bps respectively. They
were further randomly adjusted to simulate the sequencing
error and mixed with the microbiome dataset to build three
test datasets (with human reads from Chr1, Chr22 and the
whole genome respectively). Over these datasets, we ran
our prototype under three scenarios, mapping these 10 mil-
lion reads to Chr1, Chr22 or the whole genome.
Clouds. These datasets were mapped on FutureGrid [43],
an NSF-sponsored large-scale, cross-the-country cloud test-
bed. The public cloud we used includes 30 nodes with 8-
core 2.93 GHz Intel Xeon, 24 GB memory, 862 GB local
disk and Linux 2.6.18. Our private cloud is a single node

with the same software/hardware settings. We also evalu-
ated the bandwidth use of our prototype on the 40 MBps
link between the private cloud and the public cloud.

4.2 Results

In the experiments, we ran our prototype to filter the
reads on the hybrid cloud, using edit distances of 3 and
6. The overheads incurred during each step of the com-
putation was measured and compared with those of Cloud-
Burst3 [47], the most famous cloud-based mapping system,
which is also a standard service of Amazon MapReduce [6].
The results are presented in Table 3 and 4.
Data preparation (one-time cost). When the distance was
3, we extracted from our “reference genome” (Chr1, Chr22
or the whole genome) distinctive 24-mers for each of the
experiment scenarios, and generated keyed hash values for
these references using SHA-1 with a 32-byte secret key on
the private cloud. It took 29 seconds to work on Chr22,
213 seconds on Chr1 and a little more than one hour on the
whole genome using a single core. For the distance of 6,
we first identified 12-mers, which were further combined
within 100-bp windows, as described in Section 3.3. The
combined 12-mers (24 bps long in total) were then finger-
printed. This time, all 8 cores were put in use to gener-
ate the hash values. The overall time to have this job done
was estimated to be 11 hours when it came to the whole
genome. All these reference hashes were delivered to the
public cloud, which further sorted them for preparing the
mapping jobs. This sorting time varied over the scales of
the computation. When processing the whole genome with
a distance of 6, the public cloud took about 29 hours to com-
plete the job on the 6.8 TB reference hash values. Note that
this data preprocessing only incurs a one-time cost4. Such
overheads are completely affordable. For example, Amazon
routinely receives terabytes or even a larger amount of data
through its Import/Outport service [5].
Seeding performance (every dataset). Preparing the hash
values for the 10 million reads turned out to be highly effi-
cient. Even for the edit distance of 6, the keyed hash values
for the combined seeds, about 5 GB, were computed from
those reads within 7 minutes using a single core. Seeding
on such data was also fast. When the distance was 3, the
time our prototype took to process all the seeds over the
whole genome was merely a little more than 6 minutes, us-
ing 20 nodes. When the distance became 6, our approach

3CloudBurst extends a seed at every genetic location it matches, rather
than drops its read as soon as the read is successfully aligned to a reference
substring (within the distance threshold). For the fairness of comparison,
our prototype also did all extensions. Note that this is not necessary for the
filtering and our approach can achieve a much faster speed when doing the
filtering alone.

4The reference hashes can be replaced after they are used to process a
large amount of data, e.g., 10,000 read datasets (Appendix 7.3).



Table 3. Performance of Preprocessing and Seeding
Reference data perparation (One-time cost)

Reference (# of errors)
Hash Reference

(h:min:sec)

Sort hashed l-mers (h:min:sec)

(8 cores/node)

Reference

Generated (GB)

Seeding (Every dataset)

(h:min:sec) (8 cores/node)

Chr1 (3) 0:3:33 (1 core) 0:6:54 (5 nodes) 5.7 0:5:29 (5 nodes)

Chr22 (3) 0:0:29 (1 core) 0:2:12 (5 nodes) 0.9 0:5:22 (5 nodes)

Whole Genome (3) 1:1:13 (1 core) 0:23:53 (20 nodes) 79.6 0:6:12 (20 nodes)

Chr1 (6) 0:51:48 (8 cores) 2:39:2 (20 nodes) 558.9 0:13:1 (20 nodes)

Chr22 (6) 0:10:11 (8 cores) 0:17:31 (20 nodes) 88.11 0:5:39 (20 nodes)

Whole Genome (6) 11:20:7 (8 cores) 29:4:43 (30 nodes) 6997.8 1:32:53 (30 nodes)

Table 4. Outsourced Computation
Workload of Our Private Cloud Full Workload of CloudBurst

Reference

(# of errors)

Hash
seeds

(h:m:s)

(1 core)

Extension (1 core) Bandwidth
Workload

(h:m:s)

(8 cores/node)
Bandwidth

Outsource

ratio (%)

(*Estimate)

Time

(h:m:s)

Mem

(GB)

Up

(GB)

Down

(MB)

Up

(GB)

Down

(MB)

Chr1 (3) 0:1:3 0:1:16 1.85 0.72 11.18 0:31:10 (1node) 0.81 11.32 99.1

Chr22 (3) 0:1:4 0:0:38 1.47 0.72 11.11 0:3:52 (1node) 0.81 11.52 94.5

Whole Genome (3) 0:1:8 0:10:41 6.92 0.72 17.83 0:14:1 (20nodes) 0.81 15.16 99.5 *

Chr1 (6) 0:6:33 0:12:22 3.71 5.07 74.93 0:59:23 (1node) 0.81 998.06 96.1

Chr22 (6) 0:5:26 0:4:9 3.13 5.07 74.96 0:13:29 (1node) 0.81 402.46 91.1

Whole Genome (6) 0:6:1 2:37:27 8.97 5.07 120.71 0:26:43 (30nodes) 0.81 1456.14 97.5 *

understandably ran slower (one hour and a half), given the
protection it offers and the seed-combination strategy that
moves the cost from the extension to the seeding. In the
experiment, we set Java virtual machine’s maximum mem-
ory heap size to 1.6GB both for the cloud instances running
CloudBurst and those working on the seeding tasks in our
approach. We found that our approach consumed much less
memory than CloudBurst, which kept additional informa-
tion for extensions.

Extension performance (every dataset). The extension
tasks, based upon matched seeds or combinations, were so
small that they were all comfortably handled by the single
core: even in the case of the whole genome and the dis-
tance of 6, our desktop used about two hours and a half
to complete the extension. To understand the amount of
the workload our approach outsourced to the public cloud,
we tried to run CloudBurst on the desktop (using 8 cores).
This attempt succeeded when the references were Chr1 and
Chr22: in all these cases, at least 91% of the computation
were outsourced, even considering the time for preparing
the hash values of the seeds. However, running CloudBurst
on the whole genome within a single machine turned out to
be impossible, which forced us to look at its performance on
the public cloud. Specifically, for the distance of 6, Cloud-
Burst spent about 26 minutes on 30 8-core nodes to map all

the 10 million reads, whereas our cost on the private cloud
were merely 163 minutes using 1 node 1 core, including the
time for hashing the seeds. Therefore, we estimated that
over 97% workload was offloaded to the public cloud.
Communication overheads (every dataset). We found
that the communication overheads of our approach was
rather small. The maximum amount of data needed to be
uploaded to the public cloud was 5.07 GB (including the
hashes of the combined seeds for the 10 million reads),
which took only a couple of minutes to transfer on our 40
MBps link. The data downloaded from the public cloud
was much smaller, merely 120.71 MB. We can compare this
level of overheads with those incurred by having the whole
map job done by CloudBurst on the public cloud without
any privacy protection: about 0.81 GB data was uploaded in
this case and 1.42 GB data needed to be downloaded. Note
that our approach only needs to download a relatively small
amount of data for matched seed combinations5 rather than
the outcome of the whole computation.
Discussion. The overall computation time (the time spent
on the public cloud and the private cloud combined) of our
prototype was about 372 CPU hours for the mapping task
on the whole genome with an edit distance of 6, which
is about 3.5 times as much as that for performing the

5Only 5% of the reads belong to human hosts.



whole computation by CloudBurst, without privacy protec-
tion at all. Note that all existing privacy-preserving tech-
niques [17, 18, 20, 33, 35] are not even remotely close to
achieving this level of performance on the read-mapping
problem. On the EC2, this computation only costs $26
(estimated based on the price for reserved Cluster Compute
EC2 instance [1], whose computing power is comparable to
the cloud nodes we used) . At this expense, one does not
need to purchase and maintain a 240-core cluster: a single
desktop is sufficient to do the whole work.

5 Related Work

Secure outsourcing of genomic computations. Most
of the proposed techniques for secure outsourcing of ge-
nomic computations focus on new cryptographic primi-
tives [17,21,35]. For example, a protocol for computing edit
distances [17] shares a matrix for dynamic programming to
multiple servers, which need to collaborate with each other
through homomorphic encryptions and oblivious transfers
to calculate each matrix element. This approach was found
to need 5 and a half minutes to compute an instance of the
size (25, 25) [35]. Another example is the work on opti-
mized SMC for DNA sequence alignment [35], which is
designed to leverage the special features of dynamic pro-
gramming to improve the performance of SMC. Compared
with [17], the approach is much more efficient, taking about
14 seconds to complete the above task. Further improve-
ment on SMC [33] can align 2 100-element sequences in
4 seconds. Still, this overhead makes it hard to scale up
to the bar of comparing millions of reads with millions to
billions of l-mers. Recent developments on this line of re-
search include oblivious automata evaluation [20], which
only needs O(n) modular exponentiations to work on the
sequences with n elements. This performance, however,
still cannot sustain the scale of read mapping. Another re-
cent proposal [14] attempts to “disguise” DNA sequences
by scrambling some of its nucleotides to produce multiple
versions of the sequence and let multiple servers compute
on them. The outcomes of these computations are then an-
alyzed by the client to restore the edit distance between the
sequence and an l-mer. The problem with this approach is
that the server needs to communicate with the client for ev-
ery alignment attempt, making its scalability questionable.
Fundamentally, those approaches all fail to take advantage
of the special features of human genomes, which were uti-
lized in our research to build a simple and practical solution.

Secret-sharing based approaches may bring in new pol-
icy challenges: once the data has been shared to multiple
parties, the NIH completely loses the control of it, since
these parties can work together to restore the data; it is still
unclear whether the NIH needs to sign an agreement with
each of them, which these parties may want to avoid for

liability concerns [3], and if so, what the agreement will
look like. This concern is also applied to the approaches
such as distributed Smith-Waterman algorithm [53] that de-
composes a computation problem into small sub-problems
and allocates them to multiple problem solvers, under the
assumption that these parties will not collude. Another re-
lated approach [57] lets the provider of genomic data re-
place SNP values with symbols, which allows an untrusted
party to perform a program specialization on the sanitized
data. The approach assumes that the data provider knows
the locations of SNPs in its data, whereas reads do not carry
such information before they are mapped onto the reference
genome. Also remotely related to our work is the study on
the information leaks caused by aligning a query sequence
to those in a genomic database [27]. In our research, a sim-
ilar problem occurs when the public cloud analyzes the fre-
quencies of the hash values of l-mers. This threat, however,
was found to be very limited (Section 3.4).
Other secure outsourcing techniques. Early research on
secure outsourcing is mainly on delegating cryptographic
operations (e.g., modular exponentiations) to a set of un-
trusted helpers [31, 41]. More recent studies, in addition to
secure computing of edit distance, also include the compu-
tations such as linear algebra operations [16] and machine-
learning tasks [24]. For example, Peer-for-Privacy decom-
poses a category of data mining algorithms into vector addi-
tion steps and distributes them to multiple nodes on a cloud,
which can be securely evaluated through a special secret
sharing scheme [24]. All these approaches, however, may
not be suitable for computing edit distances and also incur a
large amount of communication during the computation.

6 Conclusion

In this paper, we propose a suite of new techniques that
achieve secure and scalable read mapping on hybrid clouds.
Our approach leverages the special features of the read map-
ping task, which only cares about small edit distances, and
of the Cloud, which is good at handling a large amount
of simple computation. These features enable us to split
the mapping computation according to the seed-and-extend
strategy: the seeding stage performs simple computation
(exact matching) on a large amount of ciphertext, which is
undertaken by the public cloud, and the extension stage in-
volves a very small amount of relatively complicated com-
putation (edit-distance calculation) at the genetic locations
found by the matches, which is shouldered by the private
cloud. We carefully designed these techniques to move the
workload from the private cloud to the public cloud, and
thoroughly evaluated their privacy protection and perfor-
mance. The study shows that the approach, though simple,
offers a high privacy assurance and can easily handle the
computation of a practical scale.
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7 Appendix

7.1 Read Anonymization and Re-Identification

Anonymizing read data. Different from the microarray
data that targets a specific set of SNPs, sequencing reads
are randomly drawn from a human genome, which con-
sists of 6 billion nucleotides. In a dataset with 1 million
sequences of 100-bp long, about 40% of these reads carry
SNPs, typically, one on each of them. These SNPs, roughly
0.03 of the total 14 million SNPs, can be viewed as ran-
domly picked out from the whole SNP set. This ratio can
become even lower when it comes to human microbiome
sequencing data [8], which has about 1-8% of the reads con-
taminated from the respective human host. Given that each
random sample (all SNPs on the reads from one individ-
ual) is small relative to the total number of SNPs, the over-
lapping between two different persons’ sequence datasets,
in terms of the SNPs they share, is often not significant.
Therefore, the question becomes that once we aggregate
multiple persons’ read datasets, each carrying a different
set of SNPs, whether the resulting mixture can still be used
to re-identify these individuals. We can make this identifi-
cation attempt even more difficult to succeed by randomly
adding to the mixture noise reads, which are randomly sam-
pled from the reference genome with its SNP sites randomly
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Figure 5. Effectiveness of simple mitigation techniques: 1)aggregation, 2)noise adding, 3)data parti-
tion after aggregation, and 4)data partition after noise adding.

set to major/minor alleles according to the known allele fre-
quencies in human population (e.g. taken from the HapMap
project [9]), and/or by partitioning an individual’s dataset
into multiple subsets to let the public cloud process them
separately.
The re-identification threat. Our research shows that these
techniques are still insufficient for protecting the read data
from the adversary with access to a reference population
and a DNA sample from the victim. Specifically, con-
sider a dataset whose reads are sampled from a population
(referred to as the case group). We first estimate the allele
frequencies in the case group by aligning these reads to the
reference genome: if a SNP site k has been covered by m
reads, and i of them have the major allele and the rest carry
the minor allele, the major allele frequency is calculated as
fk = i

m . Note that this frequency often deviates from the
SNP’s real major-allele frequency in the population, simply
because not everyone’s SNP k has been sampled. Actually,
it might well be that many SNP sites are not covered by any
read and therefore have frequencies of zero. The case group
here describes a group of human subjects whose reads are
aggregated into the sequence dataset, as well as a mixture
of real and fake humans, when artificial reads are added to
the dataset as noise. In either case, our objective is to de-
termine whether or not an individual (the testee) is present
in the case group from the allele frequencies we observe.
To this end, we also need a reference group, for example,
the HapMap population [9] whose allele frequency for each
SNP k, Fk, is public knowledge, and a sequence of allele
pairs6 from the testee, one pair for each of the SNP site k
whose major-allele frequency Yk can be 0 (two minor alle-
les), 0.5 (one major and one minor) or 1 (two major). Based
upon such information, we analyzed anonymized read data
using a statistic proposed by Homer, et al. [32]:

Dk = |Yk − Fk| − |Yk − fk| (3)

Assuming that the distributions of SNPs’ allele frequen-
cies in the case and reference populations are identical, the

6A human inherits genes from both of his/her parents and therefore has
two alleles at each SNP site. For a case individual, his/her two alleles
appear on two different reads.

sum of Dk across all independent SNP k will have a nor-
mal distribution, whose mean becomes zero when the testee
is not in the case/reference groups, and significantly larger
than zero when she is a case. By testing this statistic on the
null hypothesis: “the testee is not within the case group”,
we assessed the level of privacy protection that different
anonymization techniques are able to offer. Note that al-
though this statistic is well-known to be effective on the ag-
gregated microarray data [12, 32], the vulnerability of the
anonymized sequence data to such a re-identification attack
has not been investigated before.
The setting of our study. To evaluate the re-identification
risk in outsourcing anonymized read data, we performed a
series of hypothesis tests on such data under four scenar-
ios: 1) aggregation only, 2) noise-adding only, 3) aggrega-
tion and then data partition and 4) noise-adding and then
data partition. All the genomic sequences used in our study
were randomly sampled from the reference genome: when
a sampled read covered a SNP site, its allele was randomly
picked according to the major allele frequency of the site in
the YRI population, as provided by the HapMap [9]. In this
way, we acquired the realistic sequencing reads from a large
group of simulated people. Our research utilized published
3,138,397 SNP sites of the YRI population in the HapMap
dataset. We consider an anonymized dataset with 100-bp
reads to be not secure if a sequence donor for the dataset
has a probability of at least 0.1 to be identified with a con-
fidence level no less than 0.99 (i.e. a false positive rate no
more than 0.01). Our analysis aims at determining the nec-
essary condition, e.g, the minimum number of the personal
datasets (the dataset of an individual’s reads) needed to be
aggregated or the noise reads needed to be added, to protect
the person from being re-identified through her N SNPs in
the dataset.
Our findings. The outcomes of our evaluation study are
presented in Figure 5. In the leftmost panel of the figure,
we show the cost for the aggregation strategy. The sim-
ple test statistic in Equation 3 was found to be able to pose
an alarming level of threat to the DNA donors, exactly as
it does to the GWAS participants through their aggregated
allele frequencies derived from microarray data: as illus-



trated in the panel, to cover the identity information dis-
closed by the N SNPs from each donor (x-axis), a large
number of personal datasets (each with N SNPs) have to be
aggregated (y-axis). As an example, consider a human mi-
crobiome sequencing dataset that contains 10 million reads
with 3% of human contamination. These human reads cover
about 100,000 SNPs, and therefore, according to the figure,
need an aggregation of at least 38000 personal datasets of
the same size to secure, which. This amount of data cannot
be afforded by even the largest microbiome project.

Noise adding is another way to reduce the privacy
risks in outsourcing read data. In our study, we gener-
ated noise reads covering major/minor alleles at randomly-
chosen SNP sites and evaluated the re-identification power
achievable over the personal dataset including these reads.
The middle-left panel in Figure 5 shows the minimum num-
ber of noise reads (y-axis) that are required to secure the
dataset with N SNPs from a donor (x-axis). Our study
shows that the number of the required noise reads grows
linearly with regards to N . For example, at least 140 mil-
lion noise reads need to be added in order to secure a human
microbiome sequencing dataset with 10 million reads cov-
ering about 100,000 SNPs.

We further studied the strategies that partition the
datasets after they were anonymized through aggregation
or noise adding. All our analyses were performed on the
personal dataset that contained 10 million reads and cov-
ered about 100,000 human SNP sites, a large case in human
microbiome sequencing. The middle-right panel in Fig-
ure 5 shows the number of partitions needed (y-axis) to se-
cure a dataset aggregated over different numbers of personal
datasets (x-axis), and the rightmost panel demonstrates the
number of required partitions (y-axis) vs. the number of
noise reads being added (x-axis). As illustrated by the fig-
ure, when it is possible to partition an aggregated dataset
into 100 subsets for the public cloud to process indepen-
dently, the dataset should be built from at least 500 personal
datasets, or carry at least 100 million noise reads (1 million
noise reads per subset) to stay safe, which are better than
aggregation or noise adding alone, though the overheads
are still significant (particularly when it comes to other read
datasets with higher levels of SNPs). Moreover, data parti-
tion could bring in large communication overheads, because
each subset needs to be transferred to the public cloud sep-
arately. It is also less clear how to prevent the public cloud
from linking different subsets together (e.g. based on the
those who submit the jobs): when this happens, the cloud
can aggregate the subsets for the re-identification.

7.2 Identification Attacks on Combined Seeds

We demonstrate that the l-mer based near-optimal statis-
tics have no power at all, which indicates that the frequency

analysis on the keyed-hash values of l-mers does not of-
fer sufficient information for a re-identification attack. Be-
low, we show that the Homer-like statistic cannot achieve a
higher power on the combined seeds than on the continuous
seeds. The similar analysis can be applied to the log like-
lihood ratio test. Consider a continuous seed (24 bps) con-
sisting of two consecutive 12-mers, one of which contains a
SNP site (denoted by α1). Because most of the 100-bp win-
dows in the human genome contain at most one SNP site,
totally there are 100 − 12 = 88 combined seeds within the
same 100-bp window that contain the SNP site. All of them
include α1, thus can be denoted as α1||αi (i = 2, ..., 89),
and one of them is the continuous seed (denoted as α1||α2).
Let Bk(i) (i = 2, ..., 89) be the bins for combined seeds
α1||αi when α1 carries a major allele, and Bk′(i) be the
bins for α1||αi when α1 carries a minor allele. Because all
these seeds involve the same SNP site on the 12-mer α1, all
the related seeds from the testee’s genome must all carry the
same allele, major or minor. Then, the numbers of l-mers
in the bins Bk(i) and Bk′(i) (f̄k(i) and f̄k′(i), respectively)
are equally deviated from their expected counts (F̄k(i) and
F̄k′(i), respectively) as compared to the numbers of l-mers
in the bins of the continuous seeds (f̄k(2) and f̄k′(2)) devi-
ated from their expected counts (F̄k(2) and F̄k′(2)). Hence,
we have

∑
i(|ρk(i) − F̄k(i)| + |ρk′(i) − F̄k′(i)|) ≈ 88 ×

(|ρk(2)−F̄k(2)|+|ρk′(2)−F̄k′(2)|), and
∑
i(|ρk(i)− f̄k(i)|+

|ρk′(i)− f̄k′(i)|) ≈ 88× (|ρk(2)− f̄k(2)|+ |ρk′(2)− f̄k′(2)|).
Therefore, the Homer-like statistic on the bins of all com-
bined seeds will become: T̄com ≈ 88 × T̄ where T̄ is the
Homer-like statistic on the bins of continuous 24-bp seeds
(as defined in Equation 1). This implies that, no matter
the testee is a case individual or not, the test statistic on
all combined 12-bp seeds (T̄com) is a constant (88) times
larger than the test statistic on the continuous 24-bp seeds
T̄ . As a result, at the same confidence level, T̄com cannot
achieve higher power than T̄ . Since we have shown T̄ has
little re-identification power, T̄com should not either.

7.3 Correlation Analysis

Here we show that identification of correlated hash val-
ues is very hard in practice7 and attempts to do so can be
easily defeated. This challenge (to the adversary) comes
from the fact that she only observes the hash values for a
small portion of a donor’s genome: by far the largest dataset
from an individual contains no more than 10 million reads
(of 100 bps long each), only γ = 1/150 of all the 24-mers
on her genome. To understand what the adversary can do,
let us first consider the simplest case, when two 24-mers are
completely correlated. This happens when they contain al-

7Remember that each hash value in a bin cannot be uniquely linked to
an l-mer and therefore, the correlations among hashes cannot be identified
through l-mers.



leles of the same SNP: if both share the same allele, they
are positively correlated; otherwise, if one contains the ma-
jor allele and the other contains the minor allele, they are
negatively correlated. To detect such correlations, the ad-
versary needs to conduct a co-occurrence statistical test to
find out whether the hash values of these 24-mers always
appear or disappear together in different donors’ seed-hash
datasets. To defeat this attack, we can aggregate the reads
from 20 individuals (sampled from 40 DNA sequences, 2
from each) in one read-mapping task. After the aggrega-
tion, in a single aggregated dataset, no SNP site likely con-
tains only minor alleles: the probability for this to happen
is below 2−40 ≈ 10−12, since the minor allele frequency
is below 0.5. In other words, l-mers with major alleles
are always carried by some case individuals, regardless of
the presence or absence of related l-mers in the seed-hash
dataset the adversary sees. As a result, the test will fail on
the pairs of 24-mers that both contain major alleles or con-
tain one major and one minor allele. For the pair of 24-
mers both containing a minor allele, the adversary can con-
fidently conjecture they are correlated only if she observes
both 24-mers in multiple aggregated datasets, because the
probability of observing a pair of minor-allele-containing
24-mers in a specific dataset by chance is not small. Assum-
ing there areN SNP sites in the human genome (N > 106),
the random probability of observing a pair of minor-allele-
containing 24-mers in n aggregated datasets is approxi-
mately P ∼ N2 × l2 × (γ2 × t)n (where t is the mi-
nor allele frequency and t < 0.5), indicating it requires
n ≥ 4 for P � 1. On the other hand, the probability of
observing a highly correlated pair of minor-containing 24-
mers in 4 aggregated datasets is very small, unless there are
many aggregated datasets to be analyzed. For example, if
M = 500 aggregated datasets (i.e., 20 × 500 = 10, 000
human genome reads datasets) are analyzed, the probability
of observing 4 aggregated datasets that contain both minor-
allele-containing 24-mers can be estimated by a binomial
distribution: P < 5004 × (γ2/2)4 ≈ 10−8 � 1. Even
considering there are many potentially correlated SNP pairs
(e.g., close to the total number of SNPs, N ≈ 107), the ex-
pected number of confidently assigned l-mer pairs is very
small. Therefore, the test will also fail on the pairs of 24-
mers containing the same minor allele.

Alternatively, the adversary may attempt to correlate two
hashed 24-mers (which can be only partially correlated) at
two specific genetic locations through their relative frequen-
cies across multiple samples. In other words, she wants
to know whether the frequency of one of these two hashes
changes with that of the other over different samples. Here
a sample we refer to includes one individual’s read data that

indeed contains the substrings at the locations of these two
24-mers, and the frequency of the 24-mer is calculated over
multiple such samples. What we want to understand here is
whether the adversary can acquire enough samples to estab-
lish a reliable correlation between the 24-mers. Remember
that the probability a read dataset includes the substring at a
specific location is only γ = 1/150. The adversary needs a
set of 10 such samples to calculate the frequency of the 24-
mer (at the location) at the precision of one decimal digit
and multiple such sets to correlate two 24-mers. Due to the
presence of 2% sequencing errors, the best correlation co-
efficient the adversary can get between a pair of completely
correlated 24-mers (at two specific locations) is within±0.5
because 40% of the instances of the 24-mers contain an er-
ror at 2% error rate per nucleotide, and therefore their hash
values will become incorrect and their presences will not be
observed in the seed-hash datasets. As a result, the adver-
sary has to carry out a correlation test on at least 15 sets
(i.e. 150 samples) to obtain a confidence level (P -value)
of 0.05 based on the table of critical values for Pearson’s
correlation coefficient (other statistics yield similar results).
Note that the confidence level becomes even lower when
those 24-mers are not completely correlated. Therefore, as-
sume the adversary has collected M samples, the probabil-
ity for a pair of completely correlated 24-mers to be both
observed in at least 150 (out of M ) samples can be esti-
mated by a normal approximation of the binomial distribu-
tion with µ = σ2 = γ ×M . When M = 10, 000 (that is,
10, 000 read datasets), the probability of getting those 150
samples from those datasets is negligible (≈ 10−28) even
when we consider that a total of 24× 14× 106 = 3.4× 108

24-mers are subject to this correlation analysis (there are
14 million SNP sites in the human genome, each associ-
ated with 24 24-mers). For the 24-mers not completely cor-
related, for example, those containing different SNPs, the
probability to get 150 samples in 10,000 datasets is even
lower, because the chance to have both 24-mers in one sam-
ple becomes (0.6γ)2. Therefore, even when we consider
the 2-combinations of all 3.4 × 108 24-mers, the probabil-
ity to correlate any two of them using 10,000 read datasets
is well below 10−12. This is the best chance that the ad-
versary can correlate a single pair of 24-mers (which is not
enough for a re-identification). If such a risk is acceptable
to the data owner, what she can do is re-hashing the refer-
ence genome with a new secret key every 10,000 datasets.
The cost for this update is small: SHA-1 took about 5,440
minutes of CPU time to hash the whole genome on a 8-core
desktop (2.93 GHz Interl Xeon) used in our study and pro-
duced about 6.8 TB data; the average overheads are merely
40 seconds CPU time and 700 MB data transfer for each of
the 10,000 datasets.
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