
Mash-IF: Practical Information-Flow Control within Client-side Mashups

Zhou Li, Kehuan Zhang, XiaoFeng Wang
Indiana University at Bloomington

{lizho, kehzhang, xw7}@indiana.edu

Abstract
Mashup is a representative of Web 2.0 technology that

needs both convenience of cross-domain access and protec-
tion against the security risks it brings in. Solutions pro-
posed by prior research focused on mediating access to the
data in different domains, but little has been done to con-
trol the use of the data after the access. In this paper, we
present Mash-IF, a new technique for information-flow con-
trol within mashups. Our approach allows cross-domain
communications within a browser, but disallows disclosure
of sensitive information to remote parties without the user’s
permission. It mediates the cross-domain channels in ex-
isting mashups and works on the client without collabo-
rations from other parties. Also of particular interest is
a novel technique that automatically generates declassifi-
cation rules for a script by statically analyzing its code.
Such rules can be efficiently enforced through monitoring
the script’s call sequences and DOM operations.

Keywords: Web, Browser, Mashup, Protection, Security
Model, Information-Flow Control

1. Introduction
The rapid progress of Web 2.0 technologies has brought

in a whole new category of web services, such as Flickr,
YouTube, Facebook and Wikipedia. Among them is client-
side web application hybrid, commonly known as client-
side mashup, a service that syndicates data and components
from different sources into an single tool that runs within
a web client’s browser. Examples of mashups include on-
line realtors that label locations on Google Maps with real
estate data [12], financial aggregators that compile informa-
tion from one’s multiple accounts [3], and news aggregators
that integrate different news websites [17]. Those services
are gaining support from major web service providers such
as Google and Microsoft, who provide APIs for mashup de-
velopment.

The concept of mashups, unfortunately, fundamentally
contravenes the security model adopted by current web
browsers, i.e., the Same Origin Policy (SOP). The policy
prevents the documents or scripts loaded from one origin,
defined as a combination of protocol, port and host, from

accessing properties of a document from a different ori-
gin [36]. It is meant to protect web contents against cross-
domain attacks on the client side [30]. For a mashup, how-
ever, cross-domain communication among its components
becomes a necessity. Without proper security controls in
place, this opens the door to the attacks. To get out of this
dilemma, both academia and industry are actively seeking
effective solutions that permit but regulate the interactions
among mutually-untrusting web services within browsers.
Prominent examples include SMash [31], MashupOS [39]
and OMash [22]. These approaches suggest new mashup-
level abstractions that allow content providers and integra-
tors to specify policies on how their contents are accessed,
as well as new cross-domain channels that are mediated ac-
cording to the policies.

A fundamental problem of the recently proposed ap-
proaches is that they only control the access to the contents
from different domains, not the use of the contents after the
access. This is often insufficient for information protection
within mashups. As an example, consider a client-side ac-
count aggregator, a mashup version of personal financial
management software such as Mint.com [3]. Such an
aggregator is designed to consolidate information from a
user’s multiple financial accounts into a single web page.
To this end, the integrator script needs to cross its domain
so as to access the user’s bank accounts and the passwords
of these accounts [3]. However, the last thing we want is
that the script transfers such sensitive information to the
party we do not trust. Similar problems also happen, for
example, when a gmail user uses a twitter gadget to access
her twitter account but is afraid that her emails and con-
tacts are exfiltrated by the gadget. Such a risk cannot be
mitigated without proper management of information flows
within mashups. Moreover, existing proposals are designed
for guiding the development of new mashups and therefore,
might not be suitable for managing the cross-domain chan-
nels within a large number of existing mashups. They also
need cooperation from content providers and integrators to
label information.

In this paper, we present a new technique, called Mash-
IF, that makes a first step towards practical information-
flow control within mashups. Mash-IF is not meant to re-
place existing browser-level security mechanisms, such as

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 251 DSN 2010: Li et al.



SOP and those proposed in prior research [31, 39, 22]. In-
stead, it is designed to add an additional layer of protec-
tion of private user data through mediating dissemination.
Specifically, our approach includes a new information-flow
model that permits cross-domain access within a browser,
but in the absence of an explicit consent from the user, dis-
allows sensitive information to flow into any remote party
other than its origin. For example, under our model, a fi-
nancial aggregator can cross domains to gather one’s credit
or debit data from her accounts; however such access and
aggregation can only happen within the user’s browser and
the information from the accounts is not allowed to be sent
to unauthorized recipients, for example, an advertisement
website. To enforce this model, our technique mediates
DOM (Document Object Model) operations and function
calls within scripts at the add-on level. This enables us to
effectively control existing channels for cross-domain com-
munication, because such communication typically goes
through API functions supplied by web service providers.
We also developed a tool to let the user label and identify
information important to her without involvement of con-
tent providers and integrators.

Classic information-flow models like BLP treat a subject
(e.g., a script) as a black-box, and as a result, their policies
(e.g., “no read up” and “no write down”) can become over-
strict for web applications. For example, the BLP model
will completely forbid a script that inputs sensitive data to
communicate with untrusted websites, even if such com-
munication does not involve any sensitive data (e.g., down-
loading a picture). Mitigation of this problem often relies
on declassifying some outputs of a subject. In our research,
we propose a new technique that automatically generates
declassification rules for scripts. Whenever a script reads
sensitive data, our approach statically analyzes its code to
identify all the execution paths that could propagate the sen-
sitive information to other part of a mashup or remote recip-
ients. These paths are fingerprinted by their corresponding
function call sequences. The rule created thereby declas-
sifies the outputs of the script unrelated to the sequences.
A prominent property of this approach is that it only needs
to analyze a script once and can reuse the same rules af-
terwards on the script, as long as its code does not change,
which can be verified using its hash value. This strategy
works particularly well for mashups, as their scripts do not
change often. We summarize the contributions of the paper
as follows:

•Management of mashup information flows. We propose
a new model to mediate information flows within mashups.
The model is enforced through interposing on DOM opera-
tions and function calls within scripts, which enables infor-
mation flow tracking and control without changing browser
code. Also different from prior work is that Mash-IF does
not rely on content providers’ cooperation, which is critical
to the practical deployment of our techniques.

•Novel declassification approach. We propose novel tech-
niques that automatically analyze scripts to generate declas-
sification rules. These rules allow our approach to achieve
finer-grained control than the black-box models like BLP,
which is necessary for preserving legitimate functionalities
of mashups. Enforcement of these rules is based upon mon-
itoring scripts’ call sequences. Compared with the prior
research [38], this approach avoids potentially intensive
instruction-level monitoring.

•Implementation and evaluation. We implemented
Mash-IF as an add-on for the Mozilla Firefox, and evaluated
it using 10 real mashups. Our experimental study demon-
strates the efficacy of our techniques.

The rest of the paper is organized as follows. Section 2
and 3 describe our model and its enforcement techniques.
Section 4 reports our evaluation study. Section 5 compares
our approach with prior work. Section 6 discusses the limi-
tations of our techniques and Section 7 concludes the paper.

2. The Model
Basic concepts. Here, we introduce some basic concepts in
Mash-IF, including objects, subjects, flows, labels and own-
ers. An object is a repository for information. It can be
local, for example, a node in a DOM tree or a cookie, or
remote, for example, a web server identified by protocol,
port and host. A subject is an information-processing unit
that works on objects. In mashups, it typically refers to the
scripts running in a browser1. A subject can operate on an
object, which includes read and write. When these opera-
tions happen, flows that carry information moves from the
object to the subject, or from the subject to the object.

Individual objects, subjects and flows are associated
with a set of labels. A label can be described as a tu-
ple (T, O), where T is a tag for a sensitivity level and O
represents an origin. Our model includes three sensitiv-
ity levels, low (non-sensitive or public), high (sensitive)
or very high (highly sensitive). These levels correspond
to three trust relationships identified by MashupOS [39]:
open content (public) that can be accessed by any domain,
access-controlled content (sensitive) that is only accessible
to other domains through mediation and isolated content
(highly sensitive) that is completely isolated from other do-
mains. Another relationship proposed by the prior work,
unauthorized content, that describes the web content with-
out the privileges of any domain, could be modeled by an
additional sensitivity level very low. This level, however,
does not seem to be necessary in the absence of the cooper-
ation from content providers or integrators, as such content
is supposed to be identified by these parties. An origin is
indicative of the domain from which information within ob-
jects/subjects/flows comes. The domain a subject belongs
to is described by its owner tag.

1Note that scripts are web content and therefore also objects.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 252 DSN 2010: Li et al.



A reference monitor within a browser is in charge of set-
ting, changing and removing the labels attached to a local
object, a subject or a flow. A remote object’s labels, once
set, cannot be modified without the user’s consent. Mash-IF
includes a tool that helps the user indicate to the reference
monitor her sensitive information within a mashup, for ex-
ample, a password field, a table including her account bal-
ance. The labels of subjects and flows are generated auto-
matically, according to a set of rules (described below).

Security policies. The security objective of Mash-IF is to
protect sensitive or highly sensitive information from being
leaked to unauthorized parties. More specifically, for sen-
sitive information, we do not want it to flow into a remote
object in a different domain; for highly sensitive informa-
tion, it should not be accessed from other domains even
locally. The control on the highly sensitive information is
more restrictive because cross-domain access to the infor-
mation like authentication tokens, even happening within a
browser, can lead to compromise of the user’s privacy. A
prominent example is cross-site request forgery (CSRF) in
which the attacker disrupts the integrity of the user’s session
with a web site using the user’s cookie [19]. To achieve that
objective, our model offers three sets of security policies:
propagation rules, declassification rules and control rules.

Propagation rules specify how the labels of ob-
jects/subjects/flows can be inherited by other parties:

• Without declassification, a flow from an object or a subject
inherits all its labels.

• An object or a subject that receives a flow combines all
the labels of the flow with the object/subject’s own labels.

• Labels of the same origin are combined into a single label
with the highest sensitivity level among them.

Declassification rules describe when to remove labels
from objects/subjects/flows. An object can be declassified
if all of its content has been cleaned or overwritten. De-
classification of a script’s outbound flows, however, can-
not be achieved without understanding how the script pro-
cesses sensitive information. Mash-IF includes a technique
that automatically analyzes a script to generate such rules,
which we elaborate in Section 3.4. Control rules disallow
the flows incompatible with the security objective:

• Highly sensitive flows of one origin cannot be received by
an object with a label of different origin and a subject with
a different owner.

• A flow to a remote object is permitted if and only if none
of the flow’s labels unrelated to the remote object is sensi-
tive or highly sensitive.

Intuitively, Mash-IF prevents sensitive information from
flowing into the remote host that does not belong to the ori-
gin of the information. On the other hand, it gives green
light to cross-domain operations necessary for a mashup
to work properly, as long as they do not involve highly
sensitive information, and keep the sensitive information
that comes from other domains within browser. The threat

of CSRF, for example, can be eliminated by labeling the
cookie as highly sensitive.

Integrity protection. Though the current design of our
model is for confidentiality protection, we still need to con-
sider some basic integrity protection, because otherwise in-
formation leaks can happen once a subject from one do-
main has been compromised by the code from another do-
main. To this end, Mash-IF includes an integrity rule that
prevents a script from writing to another script tagged with
a different owner. We also disallow cross-domain modifica-
tions on important DOM objects and their properties, such
as document.location and document.domain.

3. Enforcing the Model in Mashups
3.1. Overview

The enforcement mechanism of Mash-IF includes three
components, a labeling tool that assists the user to mark
sensitive objects, a reference monitor (RM) that tracks, con-
trols and declassifies sensitive information flows, and a de-
classification rule generator (DRG) that analyzes the scripts
within a mashup to build the rules for identifying their non-
sensitive outputs. The interactions among these compo-
nents are illustrated in Figure 1.

Figure 1. The System Architecture

The enforcement mechanism works as described below.
Once the mashup is loaded into a browser, the labeling tool
automatically identifies a set of highly sensitive objects such
as cookies of different domains, and also provides an inter-
face to let the user mark other objects, such as the text fields
for accommodating passwords or displaying account bal-
ances. The DOM identifiers of these objects are recorded
by our mechanism, together with their origins, for identify-
ing them in the future.

The reference monitor interposes on all the DOM opera-
tions and scripts’ function calls. Whenever a script reads a
sensitive object, the label of the object is propagated to the
script. If it writes to a local object, the RM determines how
to adjust the labels of the object according to a declassifi-
cation rule for the script. Such a rule includes sequences of
DOM operations and function calls. Once the input of the
script, which can be a parameter of a DOM get operation,
is found to be sensitive or highly sensitive, the RM starts

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 253 DSN 2010: Li et al.



monitoring the script’s call sequences afterwards. If one of
the sequences in the rule is observed, the labels of the in-
put are propagated to the output, and the RM takes further
actions according to the propagation rules and the control
rules. For example, if sensitive data are about to be deliv-
ered to a remote host in a different domain, the RM can ask
for the permission to proceed.

Declassification rules are automatically generated by the
DRG through analyzing scripts’ source code. Once the RM
detects that a script invokes a DOM operation or a call that
involves sensitive or highly sensitive information, and the
script has not been evaluated with regards to the operation
or the call before, it passes the script to the DRG. Start-
ing from the input, the DRG statically analyzes the script to
find out all the call/operation sequences that can propagate
the sensitive information to the script’s outputs. Such se-
quences do not need to be accurate, as long as they do not
have false negatives and incur false positives with little im-
pact on a mashup’s normal operations. They are recorded
into an embedded database shared between the RM and the
DRG, together with a hash value of the script for identifying
it in the future and with the entry (e.g., a DOM get) from
which the analysis starts.

3.2. Labeling Tool
We built a prototype of the labeling tool based upon

Aardvark [20], a Firefox extension, as illustrated in Fig-
ure 2. The tool first identifies a set of objects with highly
sensitive information.Of particular importance is the au-
thentication data such as document.cookie and the in-
formation related to other HTTP authentication (e.g., Basic,
Digest and NTLM) and properties under history. The la-
beling tool further enables the user to mark the objects vis-
ible to them. One can use the mouse to frame elements on
web content under cursor and specify their sensitivity lev-
els. As a result, the IDs of these elements and their labels
(sensitivity levels and origins) are saved into a lightweight
database like SQLite 3 [13] used in our prototype. This ap-
proach ensures that the labels cannot be accessed by scripts
but can be easily retrieved by the reference monitor. A po-
tential problem here is that a website could alter the IDs of
those items, making the RM unable to locate them next time
when the same content is loaded. This, however, rarely hap-
pens in practice: we monitored web pages from 10 differ-
ent domains including Gmail, several banks, Facebook, and
found that though their contents changed from time to time,
the IDs of the objects accommodating sensitive data (e.g.,
passwords) were always the same. A check can also be per-
formed as soon as web content is loaded: once the IDs of
previously-labeled objects are not there, our approach can
communicate this to the user and ask her to re-identify them.

3.3. Reference Monitor
The reference monitor is designed to track, declassify

and control sensitive or highly sensitive information flows

Figure 2. Labeling Tool

within a mashup. To this end, it needs to mediate all DOM
accesses, including methods such as get, set and func-
tions like getElementById(). This can be achieved
in Firefox by extending SecurityManager, a module of XP-
COM [18], by hooking the callback functions it provides.
In Windows Internet Explorer (IE), these operations could
be intercepted by a plug-in [32] or a DLL wrapper [37].
Also interposed by the RM are JavaScript function calls,
which can be done in Firefox through call hooking. This
allows Mash-IF to mediate existing cross-domain channels
such as fragment identifier [21] and the postMessage
method in HTML 5 [23].

Data-flow tracking. The RM enforces the propagation
rules to track and label sensitive or highly sensitive infor-
mation. Once a script is observed to read from an object
whose sensitivity level is either high or very high, a declas-
sification rule for the script is chosen to identify its sensitive
output. If no appropriate rule has been found, the script is
handed to the DRG for analysis.

Information-flow tracking within Mash-IF can be facil-
itated by the knowledge of the mashup APIs provided by
content providers, such as Google AJAX APIs [28]. Such
knowledge is represented by an API model in our research:
for each API function, our model describes its attributes
with a 3-tuple (A,O, I), where A is a set of actions, in-
cluding “read” and “write”, O indicates the object on which
the action is taken, and I contains the function’s description.
Using such a model, the RM can identify a read operation
on sensitive or highly sensitive objects from API calls, and
follow the information flows created thereby until they are
about to get into other API calls, where mediation happens
according to the control rules and the descriptions of these
calls. This simplifies the task of tracing sensitive data flows
across a script: in many cases, the only scripts we need to
care about are those from integrators.

For example, consider a mashup that extracts the ad-

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 254 DSN 2010: Li et al.



dresses of one’s friends from Facebook and then marks
them on Google Maps. When monitoring the mashup, the
RM detects that an integrator script reads from Facebook
APIs the friends’ profiles, which are marked as sensitive.
The information derived from the profiles is tracked down
across the script according to a declassification rule until a
Google Maps API getLatLng() is invoked with the ad-
dresses. This API is associated with a write to a remote
object, the domain of Google. Since the information in-
volved in the operation is sensitive, declassification is re-
quired. The RM then uses the description of the function to
explain to the user what she could leak out once the call is
allowed to proceed. With the user’s consent, her response
can be saved as either a control rule or a declassification rule
for handling the same situation in the future.

This approach could put too much faith in the content
provider’s specifications of its APIs. If this is deemed too
risky, we can always choose to follow sensitive information
into individual API functions. Another issue the RM needs
to deal with is how to label the content dynamically down-
loaded from websites, for example, the data that come out of
XMLHttpRequest. Our solution is a policy that infers the
sensitivity levels of an output according to its correspond-
ing input: if sensitive or highly sensitive information (e.g.,
cookies) is involved in XMLHttpRequest, the content it
obtains will be labeled as high or very high.

Declassification. Whenever a subject writes an object, or
passes information to another subject, an information flow
that carries the subject’s labels occurs. This flow can be
declassified by the RM in accordance with a set of declas-
sification rules. A declassification rule can be specified by
the user directly or automatically identified from a script.
A user-defined rule is associated with a specific mashup,
and can be represented as (d, l), where d can be a script’s
function or an object receiving a flow with a set of labels
l. For example, one can declassify the flow with a label
(sensitive, Facebook) when it enters the Google Maps API
getLatLng. The rule generated for a script includes se-
quences of DOM accesses and function calls. These se-
quences are organized into a set of trees, with each tree de-
fined as T (N,E), where N = {n|n is function name },
and E = {〈x, y〉|x ∈ N, y ∈ N}. Examples are illustrated
in Figure 3. Each tree is rooted at a specific program loca-
tion where a function or a DOM access inputs from sensi-
tive or highly sensitive objects, and its leaves output data to
other subjects or objects. A path from the root to a leaf de-
scribes an execution path within the script that propagates
information from the input to the output. Such a rule de-
classifies the output produced by the execution that does
not correspond to any path on these trees. To enforce the
rule, the RM monitors all the calls and DOM operations
from a script once it reads a sensitive or highly sensitive
object, and attempts to identify their sequence from a tree
rooted at the input instruction. If this fails, the output is re-

garded as non-sensitive. Otherwise, control will be taken
to prevent information leaks. Since this type of rules is as-
sociated with individual scripts, the RM needs to check the
hash value of a script once it is downloaded, to ensure that
its code has not been modified. All declassification rules
and scripts’ hash are stored in a SQLite database in our
prototype. A concern for the declassification rules is that

Figure 3. The Declassification Tree
they are modeled in a public-default way: as long as no rule
matches a call sequence, the output of a script is deemed
clean. Behind this treatment is the pragmatic consideration
that most data flows within legitimate mashups can be non-
sensitive, and tracking only sensitive flows can avoid a sig-
nificant performance impact. On the other hand, such a ben-
efit does not necessarily come at the cost of the privacy as-
surance Mash-IF can achieve: as elaborated in Section 3.4,
the DRG includes a static analysis mechanism that works
effectively on a subset of the JavaScript language demon-
strated in prior research [26] to be completely analyzable;
for the statements outside that subset, our approach treats
them as black-boxes, as did the BLP model, and considers
all of their outputs to be sensitive if any of their inputs is
sensitive. In this way, Mash-IF ensures that no execution
path propagating sensitive data will slip under the radar.

Data-flow control. Information-flow control happens
whenever the RM observes cross-domain access to highly
sensitive objects or delivery of sensitive information to a
remote host in a different domain. Access to objects like
domain.cookie needs to go through DOM operations,
which our approach mediates. Networking activities of
a script, such as XMLHttpRequest, can be monitored
through function-call hooking. Setting the location
property of document or the source of an image in web
page can also leak out sensitive information to a different
domain, which can be monitored through interception of
DOM operations. In addition, the RM controls the invoca-
tion of the mashup APIs that could cause information leaks,
such as getLatLng. Actually, scripts are not the only
mashup components in touch with the outside: for example,
sensitive data can be directly sent out by form submission.
Such activities, however, will trigger DOM events, which
are monitored by the RM. Once a violation of the control
rule is found, the RM either directly stops the correspond-
ing activities, or suspends them and asks for the user’s per-
mission to proceed. To minimize the user’s involvement in

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 255 DSN 2010: Li et al.



this process, our approach can record her decision on one
access request, and given her consent, extend it to a pol-
icy that can be enforced automatically under the same cir-
cumstance, without consulting the user again. On the other
hand, all the policy settings and rules are allowed to be cus-
tomized by the user.

3.4. Declassification-Rule Generator

Once a script’s DOM operation or function call imports
sensitive or highly sensitive information, the RM identi-
fies the program location where the access happens, and at-
tempts to retrieve a declassification rule from the database
according to the location. If the attempt fails, the RM passes
the script to the DRG to generate the rule. The DRG per-
forms a static analysis on the script’s source code to extract
all its execution paths that could propagate sensitive infor-
mation to an output, and then uses the sequences of the calls
and DOM operations on these paths to build the rule.

JavaScript is well known to be hard to analyze stati-
cally [26], due to some of its language features, for example,
lack of static typing, Lambda functions and eval function,
that make the information flows within a script difficult to
determine without running the code. However, a thorough
and accurate analysis of JavaScript code is not necessary
here: what we want are just a set of “good enough” de-
classification rules with small false positives and negligible
false negatives. The classic BLP model treats a subject as a
black box. Whenever the subject receives a sensitive input,
all of its outputs are deemed sensitive. This treatment is just
too coarse-grained to be useful for controlling real scripts:
many of them need to communicate with the website in-
appropriate for receiving the data they read, though such
communication often involves no sensitive data. The DRG
is designed to refine such an information flow model. Our
approach seeks all the execution paths that propagate data
from a fixed input to outputs. This analysis does not need to
be accurate: we can always treat a complicated JavaScript
command as a black boxes, and track all of its outputs once
it operates on sensitive data.

Prior research shows that accurate static analysis can be
done on a subset of JavaScript language [26]. The DRG
we implemented works on this subset, called JavaScriptSA,
treating other language structures as black boxes. As a re-
sult, we can achieve a very good coverage, identifying all
paths that propagate sensitive data. On the other hand, the
chance of false positive, i.e., involving the path that actu-
ally does not leak information, is reasonably low, as the
JavaScript statements not in the subset are actually not fre-
quently used by legitimate scripts [26]. In our research, we
built the DRG prototype as a Firefox plug-in. Following we
elaborate our design and implementation.

Building CFG. Before analyzing information flow within
JavaScript codes, the DRG first generates a control flow
graph (CFG). It starts from the Abstract Syntax Tree (AST)

produced by calling a set of API functions [25] of Spider-
Monkey, the JavaScript virtual machine of the Firefox [24].
The CFG consists of a set of nodes and arcs, where each
node represents a basic block, and each arc represents the
transition of an execution from one basic block to another.
A basic block is a statement sequence that begins with a
jump target, ends at a branch statement and does not include
another branching.

Dataflow analysis on JavaScriptSA. Static analysis of
JavaScript is hard, but can still be achieved if we focus on
a subset of the language, which has been shown to be prac-
tical and effective by the prior work [26]. In our research,
we identified such a subset, JavaScriptSA, that can be thor-
oughly evaluated through static analysis, and came up with
a set of rules to describe how the labels of sensitive data are
propagated by the statement within that set.

The analysis starts with a set of variables that accom-
modate the data a script reads from DOM objects. Each of
such variables v is given a set of labels labelv = {v}. For
every statement along the CFG, our analyzer propagates la-
bels from the sets associated with its input variables to those
of its output variables, according to the statement’s propaga-
tion rule. An execution path that moves sensitive data from
an input to an output is identified if the variables holding the
data to be delivered to the Internet are found to be associated
with some labels. The path is then extracted for building a
declassification rule. The problem of finding such a path is
essentially the well-known reaching definition problem [33]
and thus can be solved using existed classic algorithm for it-
erative data flow analysis [33]. Our approach also includes
an inter-procedure analysis that tracks sensitive data flows
across different functions.

One important issue we need to deal with is alias. In
JavaScript, assigning an object variable “a” to another vari-
able “b” will establish an alias relation between them, and
as a result, every operation on one variable will also happen
to the other. Such a relation is transitive, and can there-
fore involve a large set of variables. This can impede our
data-flow analysis, as the DRG does not know that an ac-
cess to a variable actually generates a sensitive information
flow from another one. We solved this problem in our re-
search by annotating the alias relation among different vari-
ables in a data structure that the DRG maintains to track
them. Those variables are linked together by an alias chain.
Whenever an operation is found to transfer sensitive data
to one of them, the DRG propagates the sensitive label to
every member in the chain.

Analysis of the statements outside JavaScriptSA. Dy-
namic features of JavaScript, such as eval() and variable
index of array, are not included in JavaScriptSA. These fea-
tures are known to be the part of the language hard to an-
alyze statically. To track data flows in their presence, the
DRG adopts a strategy that treats the statement involving
these features as a black box and applies the BLP model to

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 256 DSN 2010: Li et al.



pessimistically estimate its sensitive outputs.
As an example, consider the statement id =

name[x], where x is an index variable and an ele-
ment in the array name is known to be sensitive. The
question here is how to determine the label of id, which is
sensitive if x points to the sensitive element, and nonsensi-
tive otherwise. The hurdle here, however, is that the value
of x can only be observed during the runtime. As a result,
a static analysis cannot determine whether the sensitivity
label should be propagated to id. Our solution here is to
“black-box” the statement, labeling id as sensitive as long
as a single element of name is sensitive, as the BLP does.
Similar treatments also happen to objects and complex
expressions: for an object with a sensitive attribute, we
deem that all its attributes are sensitive if the DRG cannot
statically determine which attribute a statement will operate
on; for a complex expression, we label all its outputs as
sensitive, once one of its sub-expressions is found to be
sensitive and the static analysis does not know whether an
operation on the expression involves that sub-expression.
Inevitably, such an approach will cause false positives.
This is acceptable, however, as long as the declassification
rule generated thereby does not significantly impair the
legitimate functionality of a script, which we found was
often true according to our experimental study (Section 4).

Problems happen, however, when statements like
eval() are encountered. The function eval() runs a
string as code, which can read or write any variables that
carry sensitive labels. Since the input of eval may not be
observed without running a script, the only option we have
is rolling back to the BLP model, treating all its outputs as
sensitive once a JavaScript reads a sensitive object and also
executes such a statement. Fortunately, both our research
and prior work [26] found that most legitimate scripts do
not include eval(). This ensures that in most cases, our
approach can still do much better than the BLP.

Rule generation. After discovering the execution paths
that could leak sensitive or highly sensitive information,
the DRG moves to build a tree that fingerprints individ-
ual paths with sequences of function calls and DOM op-
erations. Such sequences are actually recorded while the
script is being analyzed. Once a data-leaking path has been
found, the DRG dumps its sequence to the database. Each
sequence is also annotated by the program location where
sensitive data are read, and an output function through
which sensitive data flows get out of the script, for example,
XMLHttpRequest .open(). The program location, to-
gether with the hash value of a script, is used to retrieve
from the database the sequences associated with the script.

4. Evaluation
The purpose of our experimental study is to understand

the efficacy of our techniques in controlling information
flows within mashups. To this end, we ran our proto-

type on 10 real client-side mashups. Half of them came
from iGoogle Gadget [9], including Google Gmail Gad-
get [6], Google Finance Portfolios [5], Facebook Gad-
get [2], Google Search eBay [8] and Google Latitude [7].
Those mashups are all very popular, with tens of thousands
or even millions of users. The other half were from other
integrators, including WalkJogRun [16], ImageLoop [10],
AuctionReminder [1], Twitterfall [14] and Pingfm [11]. .
Following we elaborate the study that evaluated the effec-
tiveness (Section 4.1) and performance (Section 4.2) of our
techniques.

4.1. Effectiveness

The experiment. To evaluate our prototype against each
mashup, we first used our labeling tool to mark a set of
sensitive objects in different web domains, including login
boxes, the entries accommodating user input and the text
items including account information. Then, we performed
the operations on the labeled objects, such as login, as de-
scribed in Table 1. Scripts involved in these operations, ex-
cept the APIs whose models were known to our prototypes,
were analyzed by the DRG. The declassification rules cre-
ated in this way were utilized by the RM to enforce the two
control rules of our model.

To evaluate the effectiveness of the enforcement, we per-
formed a differential analysis in which each mashup was
executed twice, with different contents in a labeled object:
if an output was found to be different in these two runs, it
was treated as sensitive. This analysis was based upon Fire-
bug [34], a Firefox add-on that intercepts and records all the
traffic generated by the browser, including HTML requests
(including GET, POST and PUT) and XMLHttpRequest.
In the experiment, whenever a sensitive output was found,
we checked the Firebug log to find out the party to receive
data. If the recipient was not in a same domain as the la-
beled object, a false negative was recorded. Once our pro-
totype blocked an attempt to transfer data, we also checked
the log to determine whether the data was sensitive. If not,
a false positive was logged.

Findings. For each mashup, we found that our prototype
successfully mediated its sensitive information flows. Our
differential analysis discovered sensitive outputs in eight of
those mashups. Among them, seven actually transferred the
data to the same domains. Only one was found to leak in-
formation to a different domain. Our prototype identified
all of them, but only blocked the last one. As a result, the
experiment reported zero false positive and false negative.
The detailed outcomes are described in Table 1.

Twitterfall and Pingfm are the two mashups that were
not found to export any sensitive data. All their informa-
tion flows derived from user data were kept local, within
the browser. Google Finance Portfolios is among the
seven that transferred sensitive information to the same do-
mains. What it did was delivery of the stock code we en-

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 257 DSN 2010: Li et al.



Table 1. Effectiveness

Mashup API Operation Labeled API Test Log Output Input and
Providers Objects Model Result Result Objects Output Origins

WalkJogRun Google Map Login Input box trackPageView Block Leak User ID Different

ImageLoop Facebook Upload photo Function doImport No Block No Leak User Photo Same

Facebook Gadget Facebook Search friends Input box gel No Block No Leak Friends Name Same

Gmail Google
Gmail Open one mail Div No Block No Leak Mail Subject Same

Gadget

Google Finance
Google Financial Add one stock Input box No Block No Leak Stock ID Same

Portfolios

AuctionReminder Google Calendar Add one event Select Option No Block No Leak Event Type Same

Google Search
eBay Search Goods Input box No Block No Leak Item Name Same

eBay

Twitterfall
Twitter

Search twitter Input box getLatLng No Block No Leak
Google Map

Pingfm
Facebook

Type message Textarea No Block No Leak
Twitter

Google Latitude
Google Contact

Set Location Input box getLatLng No Block No Leak
User

Same
Google Map Address

Table 2. Performance

Case Operation Native
(μs)

Analysis
and
Monitor
(μs)

Overhead
Monitor
Only
(μs)

Overhead

1 Login 66 108 63.64% 74.9 13.48%

2 Upload photo 575.8 1118 94.16% 687.6 19.42%

3 Search friends 127 221 74.02% 162.7 28.11%

4 Open one mail 99.2 154 55.24% 110.2 11.09%

5 Add one stock 9.5 55 478.95% 10.6 11.58%

6 Add one event 14.7 39 165.31% 17 15.65%

7 Search Goods 14.6 44 201.37% 20.7 41.78%

8 Search twitter 43.6 74 69.72% 60.3 38.30%

9 Type message 4.4 12 172.73% 6.1 38.64%

10 Set Location 4.1 8 95.12% 4.4 7.32%

tered to Google Financial. WalkJogRun [16] is the one
that leaked out sensitive user information. It required
userid and password to log in. Once the login button
was clicked, we found that a function from the integra-
tor, accoutLogin, was triggered. The function not only
authenticated the user input and sent the data to its web-
site, but also passed userid to trackPageView, an
API provided by Google Analytics [4]. Our model for the
API showed that it would deliver the input to the UCFE
(Urchin Collector Front-end) [15], a different domain. This
cross-domain operation was captured by our prototype and
blocked according to the control rule.

4.2. Performance

The performance of our prototype was evaluated under
three scenarios. In the first one, which we call “native”, the
mashup was executed in a browser that did not include our
implementation. The second scenario, “analysis and mon-
itor”, involved statically analyzing scripts and utilizing the
declassification rules generated thereby to track information
flows. The third one, “monitor only”, emulated the situa-
tion when a script analyzed before was executed again. In

this case, the rule associated with it (sequences of DOM ac-
cess and function calls) was applied to propagate sensitive
labels across the script. In all three scenarios, a set of oper-
ations, as illustrated in Table 2, were performed within each
mashup, and delays incurred by them were recorded. The
experimental results reported here were averaged over mul-
tiple runs and the computation platforms we used included
a 2.00 GHz AMD Turion-PC with 3 GB RAM, on which
Windows Vista and Firefox 3.0.8 was installed.

From Table 2, we can observe that a significant overhead
was incurred when the prototype had to analyze a script:
the delays reported here ranges from 50% to 500%. This,
however, happens only when a script is first encountered, or
when it exhibits the behavior never seen before. Mashups
are typically used repeatedly by users and their code rarely
changes. As a result, the overhead for “monitor only” is
actually more likely to reflect the delay those users expe-
rience. In this scenario, we observed the latencies below
20% in six mashups, 30% in one and around 40% in the
other three. Such an overhead is often completely over-
shadowed by other operation delays such as communication
time. For example, we measured the login process of Face-
book for 5 times, and found the delay the user experienced
was only 2.9%, though the overhead for the login operation
alone was 13.48%. We also found that API models could
greatly reduce the delays, which is understandable, as many
complicated operations for analyzing scripts and monitor-
ing its behaviors were avoided in this case. Another finding
is that our prototype did not affect the operation of a browser
at all when no sensitive objects were labeled: we used the
browser equipped with Mash-IF to surf hundreds of web-
sites with no sensitive information, and did not experience
any noticeable delay.

5. Related Work
Access control in mashup. Mashups are built upon cross-
domain access, which runs contradictory to the Same Ori-

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 258 DSN 2010: Li et al.



gin Policy, the security policy widely used in today’s web
browsers. A solution to the problem is mediated cross-
domain access, which has been intensively studied recently.
Prominent examples include MashupOS [39], OMash [22]
and Smash [31]. MashupOS [39] applied the abstrac-
tions from operating systems to protect the resources within
mashups and proposes four trust relationships between con-
tent providers and integrators. Those relationships can also
be described in our model. OMash [22] suggests a new ab-
straction that treats web pages as objects, using a predefined
method “getPublicInterface()” to expose its pub-
lic data. SMash [31] adopts an abstraction of components
and communication channels, where principles are mapped
to the components connected to an event hub through in-
put/output ports. The event hub here is a publish/subscribe
system with many-to-many channels through which mes-
sages are published and distributed. A fundamental limita-
tion of those models is their focus on the access to the data,
rather than the use of the data after the access happens. This
is insufficient for many practical mashups that need to use
one’s sensitive data but cannot be trusted not to send them to
an unauthorized party. Moreover, those approaches require
the cooperation among content providers, integrators and
the clients, which render them hard to deploy. Mash-IF is
designed to address these issues: it controls sensitive data at
information-flow level and works on the existing mashups
even in the absence of collaborations from other parties.

Script Analysis. Program analysis techniques have been
increasingly used to analyze scripts and other Web appli-
cations. In [38], both dynamic and static analyses are
applied to track the sensitive information flow at the in-
struction level to mitigate the threat of cross-site scripting.
Instruction-level dynamic taint analysis is certainly more
accurate than our approach, which is based upon monitor-
ing call sequences. However, such an analysis needs to
monitor every binary instruction. It also needs to modify
browsers, particularly, the source code of JavaScript vir-
tual machine, while Mash-IF can be built into browser add-
ons. The static analysis Mash-IF utilizes can thoroughly
analyze a subset of JavaScript language, as did in prior re-
search [26]. Unlike that work, which intends to detect un-
trusted widget [26], our aim is to roughly track data flows
across scripts, and therefore can always employ the black-
box model like the BLP whenever hard-to-analyze state-
ments (those outside the subset) are encountered. Another
important contribution of our approach is utilization of a
fingerprint of the execution (sequences of calls and DOM
access) that could leaks to information leaks to efficiently
track sensitive data during the runtime. This approach is
novel, up to our knowledge, and turns out to be effective,
according to our experiment study (Section 4). Script anal-
ysis has also been used in BrowserShield [35] and Pixy [29].
BrowserShield relies on a proxy on the firewall to interpose
on JavaScript statements in web pages and then analyze it
using the interposition functions. It is designed for detect-

ing exploits of the vulnerabilities within a browser, not for
tracking information flows. On the other hand, the tech-
nique it uses to wrap statements might also be applied to
mediate DOM access, a necessary step for extending Mash-
IF to the Internet Explorer (IE). Pixy also statically analyzes
scripts. However, it is meant to work on PHP scripts on the
server side, for discovering such vulnerabilities as SQL in-
jection, while our focus is scripts running in browsers.

DOM operation interception. An important technique
used in Mash-IF is DOM operation interception. Hal-
laraker et al. [27] proposed a model to audit the execution
of JavaScript and implemented it in the Firefox, which is
similar to the technique we adopted to mediate DOM ac-
cess. SpyShield [32] mediates DOM events from the IE to
contain malicious add-ons. In the absence of source code,
further study is needed to explore the potential to achieve a
full mediation of DOM access within the IE.

BFlow. Concurrently with our research and independently,
Yip et al. proposes BFlow [40], a technique that controls
the information flows within browsers. However, Mash-IF
differs significantly from BFlow in the following perspec-
tives. First, BFlow tracks data at the granularity of protec-
tion zones, groups of browser frames, while our approach
can achieve much finer-grained control, to individual DOM
objects. Second, BFlow requires an explicit declassification
either by the user or the developer, while our work can auto-
matically generate declassification rules through analyzing
scripts. Third, BFlow needs the support from web servers
to label sensitive data. In contrast, Mash-IF is designed to
work on the client side, and can therefore record and iden-
tify sensitive objects without the help from the server.

6. Discussion
The information-flow model we propose here is designed

to work on the client side, in the absence of the cooperation
from content providers and integrators. This is in contrast
to the prior work [40] that needs effort from web clients,
servers and integrators. However, client-side control can
be limited, as a web client may not have sufficient infor-
mation to determine the sensitivity and even the origins of
some contents. On the other hand, requirement of collabo-
rations from all parties can impede the practical deployment
of a technique. We are considering design of a new model
to take advantage of the information from different parties
when available, and also incrementally deployable. Another
important extension we plan to work on is incorporation of
integrity protection into our system.

Identifying and labeling subjects/objects need to be fur-
ther automated. An important issue here is how to deter-
mine the sensitivity of the inputs from a user. A straight-
forward solution is to let the user mark an object to which
she will key in sensitive data like password. This, how-
ever, can be inconvenient. A better solution should be more
automatic: for example, a labeling tool can mark an input

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 259 DSN 2010: Li et al.



from the user as sensitive if the same content was found in
a “password” field before. Such labeling techniques will be
investigated in our follow-up research.

Effective mediation of DOM access and function calls
is the very foundation for information-flow control. We
demonstrated that this can be conveniently achieved in Fire-
fox through browser extension. A further study will seek ef-
fective ways to apply our technique to Internet Explorer, to
which mediation without changing browser code is critical.

Our current implementation of the DRG only focuses on
data flows and relies on static analysis. Natural extensions
of this approach include control-flow analysis, and combi-
nation of static and dynamic analysis. These technologies
have been demonstrated in prior research [38] to be effec-
tive, and there is little doubt that they can be integrated
into our system. The special part of our approach is finger-
printing information-leaking paths discovered by the anal-
ysis with call sequences, which can be efficiently checked
when the same script is used again. We believe that the ap-
plication of this technique is clearly beyond mashups. It
is conceivable that one can use the same approach to effec-
tively track and control information flows within server-side
scripts, and other applications.

7 Conclusion
In this paper, we present Mash-IF, a new technique for

information-flow control on the client side. Our technique
enables cross-domain access to sensitive information within
a browser, but forbid propagation of such information to an
unauthorized remote host. We designed our technique in a
way that it can work without the collaborations from other
parties and mediate the existing channels for cross-domain
communications. We also developed a new technique that
automatically builds declassification rules for a script by
statically analyzing its code. Such rules can be efficiently
enforced within a browser by monitoring sequences of func-
tion calls and DOM operations. We evaluated Mash-IF
against real mashups, and discovered a previous-unknown
privacy problem in one of them.

Acknowledgement
We thank our shepherd Christopher Stewart for his guid-

ance on preparing the final version of the paper, and anony-
mous reviewers for their valuable comments. This work
was supported in part by the National Science Foundation
under Grant No. CNS-0716292.

References

[1] Auctionreminder. http://www.auctionreminder.net/.
[2] Facebook gadget. http://www.google.com/ig/directory?hl=

en&type=gadgets&url=www.brianngo.net/ig/facebook.xml.
[3] Free personal finance software, budget software, online money management

and budget planner, mint.com. http://www.mint.com/.
[4] Google analytics. http://www.google.com/analytics/.

[5] Google finance portfolios. http://www.google.com/ig/
directory?hl=en&type=gadgets&url=www.google.com/
ig/modules/finance_portfolios.xml.

[6] Google gmail gadget. http://www.google.com/ig/directory?
hl=en&type=gadgets&url=www.google.com/ig/modules/
builtin_gmail.xml.

[7] Google latitude. http://www.google.com/ig/directory?hl=
en&type=gadgets&url=www.google.com/ig/modules/fv.xml.

[8] Google search ebay. http://www.google.com/ig/directory?hl=
en&type=gadgets&url=www.netremote.com/rss/ebay.xml.

[9] igoogle. http://www.google.com/ig.
[10] Imageloop. http://www.imageloop.com.
[11] Ping.fm. http://ping.fm/.
[12] Savvyrent.com. http://www.savvyrent.com.
[13] Sqlite. http://www.sqlite.org/.
[14] Twitterfall. http://twitterfall.com/.
[15] Urchin 5 web analytics software. http://www.google.com/

analytics/urchin_software.html.
[16] Walkjogrun. http://www.walkjogrun.net.
[17] What’s out? http://whatsout.net/.
[18] Xpcom - mdc. https://developer.mozilla.org/en/XPCOM, 2008.
[19] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site request

forgery. In CCS ’08: Proceedings of the 15th ACM conference on Computer
and communications security, pages 75–88, New York, NY, USA, 2008. ACM.

[20] R. Brown. Aardvark firefox extension. http://karmatics.com/
aardvark/, 2005.

[21] J. Burke. Cross domain frame communication with fragment
identifiers. http://tagneto.blogspot.com/2006/06/
cross-domain-frame-communication-with.html, 2006.

[22] S. Crites, F. Hsu, and H. Chen. Omash: enabling secure web mashups via
object abstractions. In Proceedings of the 15th ACM conference on Computer
and communications security, pages 99–108. ACM New York, NY, USA, 2008.

[23] I. H. et al. Html 5 working draft. http://www.whatwg.org/specs/
web-apps/current-work/.

[24] M. Foundation. Spidermonkey (javascript-c) engine. http://www.
mozilla.org/js/spidermonkey/, 2009.

[25] M. Foundation. Spidermonkey jsparse.c cross-reference. http://mxr.
mozilla.org/mozilla/source/js/src/jsparse.c, 2009.

[26] S. Guarnieri and B. Livshits. Gatekeeper: Mostly static enforcement of security
and reliability policies for javascript code. In Proceedings of the 18th USENIX
Security Symposium. USENIX society, 2009.

[27] O. Hallaraker and G. Vigna. Detecting malicious javascript code in mozilla.
In ICECCS ’05: Proceedings of the 10th IEEE International Conference on
Engineering of Complex Computer Systems, pages 85–94, Washington, DC,
USA, 2005. IEEE Computer Society.

[28] G. Inc. Google ajax apis. http://code.google.com/apis/ajax/,
2009.

[29] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detect-
ing web application vulnerabilities (short paper). In 2006 IEEE symposium on
security and privacy, pages 258–263, 2006.

[30] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner. Dynamic pharming at-
tacks and locked same-origin policies for web browsers. In Proceedings of the
15th ACM conference on Computer and communications security, pages 58–71.
ACM New York, NY, USA, 2007.

[31] F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama. Smash:
secure component model for cross-domain mashups on unmodified browsers.
In Proceeding of the 17th international conference on World Wide Web, pages
535–544. ACM New York, NY, USA, 2008.

[32] Z. Li, X. Wang, and J. Y. Choi. Spyshield: Preserving privacy from spy add-
ons. In Recent Advances in Intrusion Detection (RAID), pages 296–316, 2007.

[33] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[34] I. Parakey. Firebug - web development evolved. http://getfirebug.
com/, 2009.

[35] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir. Browsershield:
Vulnerability-driven filtering of dynamic html. In Proc. OSDI, 2006.

[36] J. Ruderman. The same origin policy. http://www.mozilla.org/
projects/security/components/same-origin.html, 2008.

[37] K. Skilling. Function call tracing in jscript. http://www.codeproject.
com/KB/scripting/JScriptDebug.aspx, 2007.

[38] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-
site scripting prevention with dynamic data tainting and static analysis. In Pro-
ceeding of the Network and Distributed System Security Symposium (NDSS’07),
2007.

[39] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and communication
abstractions for web browsers in mashupos. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP 2007), pages 1–16, 2007.

[40] A. Yip, N. Narula, M. Krohn, and R. Morris. Privacy-preserving browser-side
scripting with bflow. In EuroSys’09, 2009.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 260 DSN 2010: Li et al.


